1. Obtaining Novel Vitamin B12 Production Strains Acetobacter malorum HFD 3141 and Acetobacter orientalis HFD 3031 from Home-Fermented Sourdough
- Author
-
Lisa Stumpf, Stefan Schildbach, and Aidan Coffey
- Subjects
cobalamin ,pseudocobalamin ,Acetobacter ,acetic acid bacteria ,food biofortification ,hidden hunger ,Microbiology ,QR1-502 - Abstract
Vitamin B12 is a critical nutrient in vegan and vegetarian lifestyles as plant-based vitamin sources are rare. Traditional fermented foods could be enriched by adding vitamin B12-producing bacteria to offer non-animal vitamin sources. The aim was to isolate a vitamin B12 producer that is capable of producing the human-active vitamin even at low pH values so that it can be used in fruit juice fortification. Therefore, fermented foods (homemade and industrial) and probiotics were screened for vitamin B12 production strains. A modified microbiological vitamin B12 assay based on Lactobacillus delbrueckii subsp. lactis DSM 20355 was used to identify vitamin B12-containing samples and the presence of vitamin B12-producing strains. The screening resulted in isolating several positive strains for vitamin B12 formation derived from sourdough. Mass spectrometry confirmed the biosynthesis of solely the human physiologically active form. Species identification carried out by the German Strain Collection of Microorganisms and Cell Cultures resulted in two species: Acetobacter orientalis and Acetobacter malorum, of which two isolates were further characterised. The potential for cobalamin biosynthesises in food matrixes was demonstrated for A. malorum HFD 3141 and A. orientalis HFD 3031 in apple juice at different pH values (2.85–3.80). The isolates synthesised up to 18.89 µg/L and 7.97 µg/L vitamin B12 at pH 3.80. The results of this study suggest that acetic acid bacteria (AAB) and fermented acetic acid foods are promising resources for vitamin B12 and its producers, which might have been overlooked in the past.
- Published
- 2024
- Full Text
- View/download PDF