5 results on '"Aicha Bentaieb"'
Search Results
2. A pan-cancer organoid platform for precision medicine
- Author
-
Brian M. Larsen, Madhavi Kannan, Lee F. Langer, Benjamin D. Leibowitz, Aicha Bentaieb, Andrea Cancino, Igor Dolgalev, Bridgette E. Drummond, Jonathan R. Dry, Chi-Sing Ho, Gaurav Khullar, Benjamin A. Krantz, Brandon Mapes, Kelly E. McKinnon, Jessica Metti, Jason F. Perera, Tim A. Rand, Veronica Sanchez-Freire, Jenna M. Shaxted, Michelle M. Stein, Michael A. Streit, Yi-Hung Carol Tan, Yilin Zhang, Ende Zhao, Jagadish Venkataraman, Martin C. Stumpe, Jeffrey A. Borgia, Ashiq Masood, Daniel V.T. Catenacci, Jeremy V. Mathews, Demirkan B. Gursel, Jian-Jun Wei, Theodore H. Welling, Diane M. Simeone, Kevin P. White, Aly A. Khan, Catherine Igartua, and Ameen A. Salahudeen
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Summary: Patient-derived tumor organoids (TOs) are emerging as high-fidelity models to study cancer biology and develop novel precision medicine therapeutics. However, utilizing TOs for systems-biology-based approaches has been limited by a lack of scalable and reproducible methods to develop and profile these models. We describe a robust pan-cancer TO platform with chemically defined media optimized on cultures acquired from over 1,000 patients. Crucially, we demonstrate tumor genetic and transcriptomic concordance utilizing this approach and further optimize defined minimal media for organoid initiation and propagation. Additionally, we demonstrate a neural-network-based high-throughput approach for label-free, light-microscopy-based drug assays capable of predicting patient-specific heterogeneity in drug responses with applicability across solid cancers. The pan-cancer platform, molecular data, and neural-network-based drug assay serve as resources to accelerate the broad implementation of organoid models in precision medicine research and personalized therapeutic profiling programs.
- Published
- 2021
- Full Text
- View/download PDF
3. Clinically-inspired automatic classification of ovarian carcinoma subtypes
- Author
-
Aicha BenTaieb, Masoud S Nosrati, Hector Li-Chang, David Huntsman, and Ghassan Hamarneh
- Subjects
Computer-aided diagnosis ,machine learning ,ovarian carcinoma ,Computer applications to medicine. Medical informatics ,R858-859.7 ,Pathology ,RB1-214 - Abstract
Context: It has been shown that ovarian carcinoma subtypes are distinct pathologic entities with differing prognostic and therapeutic implications. Histotyping by pathologists has good reproducibility, but occasional cases are challenging and require immunohistochemistry and subspecialty consultation. Motivated by the need for more accurate and reproducible diagnoses and to facilitate pathologists′ workflow, we propose an automatic framework for ovarian carcinoma classification. Materials and Methods: Our method is inspired by pathologists′ workflow. We analyse imaged tissues at two magnification levels and extract clinically-inspired color, texture, and segmentation-based shape descriptors using image-processing methods. We propose a carefully designed machine learning technique composed of four modules: A dissimilarity matrix, dimensionality reduction, feature selection and a support vector machine classifier to separate the five ovarian carcinoma subtypes using the extracted features. Results: This paper presents the details of our implementation and its validation on a clinically derived dataset of eighty high-resolution histopathology images. The proposed system achieved a multiclass classification accuracy of 95.0% when classifying unseen tissues. Assessment of the classifier′s confusion (confusion matrix) between the five different ovarian carcinoma subtypes agrees with clinician′s confusion and reflects the difficulty in diagnosing endometrioid and serous carcinomas. Conclusions: Our results from this first study highlight the difficulty of ovarian carcinoma diagnosis which originate from the intrinsic class-imbalance observed among subtypes and suggest that the automatic analysis of ovarian carcinoma subtypes could be valuable to clinician′s diagnostic procedure by providing a second opinion.
- Published
- 2016
- Full Text
- View/download PDF
4. Integration of tumor extrinsic and intrinsic features associates with immunotherapy response in non-small cell lung cancer
- Author
-
Denise, Lau, Sonal, Khare, Michelle M, Stein, Prerna, Jain, Yinjie, Gao, Aicha, BenTaieb, Tim A, Rand, Ameen A, Salahudeen, and Aly A, Khan
- Subjects
Lung Neoplasms ,Carcinoma, Non-Small-Cell Lung ,Biomarkers, Tumor ,Humans ,Immunotherapy ,CD8-Positive T-Lymphocytes - Abstract
The efficacy of immune checkpoint blockade (ICB) varies greatly among metastatic non-small cell lung cancer (NSCLC) patients. Loss of heterozygosity at the HLA-I locus (HLA-LOH) has been identified as an important immune escape mechanism. However, despite HLA-I disruptions in their tumor, many patients have durable ICB responses. Here we seek to identify HLA-I-independent features associated with ICB response in NSCLC. We use single-cell profiling to identify tumor-infiltrating, clonally expanded CD4
- Published
- 2021
5. Development and validation of a deep learning-based microsatellite instability predictor from prostate cancer whole-slide images
- Author
-
Qiyuan Hu, Abbas A. Rizvi, Geoffery Schau, Kshitij Ingale, Yoni Muller, Rachel Baits, Sebastian Pretzer, Aïcha BenTaieb, Abigail Gordhamer, Roberto Nussenzveig, Adam Cole, Matthew O. Leavitt, Ryan D. Jones, Rohan P. Joshi, Nike Beaubier, Martin C. Stumpe, and Kunal Nagpal
- Subjects
Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Microsatellite instability-high (MSI-H) is a tumor-agnostic biomarker for immune checkpoint inhibitor therapy. However, MSI status is not routinely tested in prostate cancer, in part due to low prevalence and assay cost. As such, prediction of MSI status from hematoxylin and eosin (H&E) stained whole-slide images (WSIs) could identify prostate cancer patients most likely to benefit from confirmatory testing to evaluate their eligibility for immunotherapy and need for Lynch syndrome testing. Prostate biopsies and surgical resections from prostate cancer patients referred to our institution were analyzed. MSI status was determined by next-generation sequencing. Patients sequenced before a cutoff date formed an algorithm development set (n = 4015, MSI-H 1.8%) and a paired validation set (n = 173, MSI-H 19.7%) that consisted of two serial sections from each sample, one stained and scanned internally and the other at an external site. Patients sequenced after the cutoff date formed a temporally independent validation set (n = 1350, MSI-H 2.3%). Attention-based multiple instance learning models were trained to predict MSI-H from H&E WSIs. The predictor achieved area under the receiver operating characteristic curve values of 0.78 (95% CI [0.69–0.86]), 0.72 (95% CI [0.63–0.81]), and 0.72 (95% CI [0.62–0.82]) on the internally prepared, externally prepared, and temporal validation sets, respectively, showing effective predictability and generalization to both external staining/scanning processes and temporally independent samples. While MSI-H status is significantly correlated with Gleason score, the model remained predictive within each Gleason score subgroup.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.