34 results on '"Ahmetolan, Semra"'
Search Results
2. A New Susceptible-Infectious (SI) Model With Endemic Equilibrium
- Author
-
Peker-Dobie, Ayse, Ahmetolan, Semra, Bilge, Ayse Humeyra, and Demirci, Ali
- Subjects
Quantitative Biology - Populations and Evolution - Abstract
The focus of this article is on the dynamics of a new susceptible-infected model which consists of a susceptible group ($S$) and two different infectious groups ($I_1$ and $I_2$). Once infected, an individual becomes a member of one of these infectious groups which have different clinical forms of infection. In addition, during the progress of the illness, an infected individual in group $I_1$ may pass to the infectious group $I_2$ which has a higher mortality rate. In this study, positiveness of the solutions for the model is proved. Stability analysis of species extinction, $I_1$-free equilibrium and endemic equilibrium as well as disease-free equilibrium is studied. Relation between the basic reproduction number of the disease and the basic reproduction number of each infectious stage is examined. The model is investigated under a specific condition and its exact solution is obtained., Comment: 14 pages, 11 figures
- Published
- 2020
3. Nonlinear Modulation of Periodic Waves in the Cylindrical Gardner Equation
- Author
-
Aslanova, Gunay, Ahmetolan, Semra, and Demirci, Ali
- Subjects
Nonlinear Sciences - Pattern Formation and Solitons - Abstract
The propagation of the dispersive shock waves (DSWs) is investigated in the cylindrical Gardner (cG) equation, which is obtained by employing a similarity reduction to the two space one time (2+1) dimensional Gardner-Kadomtsev-Petviashvili (Gardner-KP) equation. We consider the step-like initial condition along a parabolic front. Then, the cG-Whitham modulation system, which is a description of DSW evolution in the cG equation, in terms of appropriate Riemann type variables is derived. Our study is supported by numerical simulations. The comparison is given between the direct numerical solution of the cG equation and the DSW solution obtained from the numerical solution of the Whitham system. According to this comparison, a good agreement is found between the solutions.
- Published
- 2020
- Full Text
- View/download PDF
4. What Can We Estimate from Fatality and Infectious Case Data using the Susceptible-Infected-Removed (SIR) model? A case Study of Covid-19 Pandemic
- Author
-
Ahmetolan, Semra, Bilge, Ayse Humeyra, Demirci, Ali, Peker-Dobie, Ayse, and Ergonul, Onder
- Subjects
Quantitative Biology - Populations and Evolution ,Quantitative Biology - Quantitative Methods - Abstract
The rapidly spreading Covid-19 that affected almost all countries, was first reported at the end of 2019. As a consequence of its highly infectious nature, countries all over the world have imposed extremely strict measures to control its spread. Since the earliest stages of this major pandemic, academics have done a huge amount of research in order to understand the disease, develop medication, vaccines and tests, and model its spread. Among these studies, a great deal of effort has been invested in the estimation of epidemic parameters in the early stage, for the countries affected by Covid-19, hence to predict the course of the epidemic but the variability of the controls over the course of the epidemic complicated the modeling processes. In this article, the determination of the basic reproduction number, the mean duration of the infectious period, the estimation of the timing of the peak of the epidemic wave is discussed using early phase data. Daily case reports and daily fatalities for ten countries over the period January 22, 2020 - April 18, 2020 are evaluated using the Susceptible-Infected-Removed (SIR) model. For each country, the SIR models fitting cumulative infective case data within 5% error are analysed. It is observed that the basic reproduction number and the mean duration of the infectious period can be estimated only in cases where the spread of the epidemic is over (for China and South Korea in the present case). Nevertheless, it is shown that the timing of the maximum and timings of the inflection points of the proportion of infected individuals can be robustly estimated from the normalized data. The validation of the estimates by comparing the predictions with actual data has shown that the predictions were realised for all countries except USA, as long as lock-down measures were retained.
- Published
- 2020
5. Unexpected parameter ranges of the 2009 A(H1N1) epidemic for Istanbul and the Netherlands
- Author
-
Demirci, Ali, Dobie, Ayse Peker, Bilge, Ayse Humeyra, and Ahmetolan, Semra
- Subjects
Quantitative Biology - Populations and Evolution ,92D30, 37N25 - Abstract
The data of the 2009 A(H1N1) epidemic in Istanbul, Turkey is unique in terms of the collected data, which include not only the hospitalization but also the fatality information recorded during the pandemic. The analysis of this data displayed an unexpected time shift between the hospital referrals and fatalities. This time shift, which does not conform to the SIR and SEIR models, was explained by multi-stage SIR and SEIR models [21]. In this study we prove that the delay for these models is half of the infectious period within a quadratic approximation, and we determine the epidemic parameters $R_0$, $T$ and $I_0$ of the 2009 A(H1N1) Istanbul and Netherlands epidemics.These epidemic parameters were estimated by comparing the normalized cumulative fatality data with the solutions of the SIR model. Two different error criteria, the $L_2$ norms of the error over the whole observation period and over the initial portion of the data, were used in order to obtain the best-fitting models. It was observed that, with respect to both criteria, the parameters of "good" models were agglomerated along a line in the $T$-$R_0$ plane, instead of being scattered uniformly around a "best" model. As this fact indicates the existence of a nearly invariant quantity, interval estimates for the parameters were given. As the initial phase of the epidemics were less influenced by the effects of medical interventions, the error norm based on the initial portion of the data was preferred. However, the presented parameter ranges are well out of the range for the usual influenza epidemic parameter values. To confirm our observations on the Istanbul data, the same error criteria were also used for the 2009 A(H1N1) epidemic for the Netherlands, which has a similar population density as in Istanbul. As in the Istanbul case, the parameter ranges do not match the usual influenza epidemic parameter values.
- Published
- 2020
6. On the time shift phenomena in epidemic models
- Author
-
Dobie, Ayse Peker, Demirci, Ali, Bilge, Ayse Humeyra, and Ahmetolan, Semra
- Subjects
Quantitative Biology - Quantitative Methods ,Quantitative Biology - Populations and Evolution - Abstract
In the standard Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-Removed (SEIR) models, the peak of infected individuals coincides with the in ection point of removed individuals. Nevertheless, a survey based on the data of the 2009 H1N1 epidemic in Istanbul, Turkey [19] displayed an unexpected time shift between the hospital referrals and fatalities. With the motivation of investigating the underlying reason, we use multistage SIR and SEIR models to provide an explanation for this time shift. Numerical solutions of these models present strong evidences that the delay is approximately half of the infection period of the epidemic disease. In addition, graphs of the classical SIR and the multistage SIR models; and the classical SEIR and the multistage SEIR models are compared for various epidemic parameters. Depending on the number of stages, it is observed that the delay varies for relatively small stage numbers whereas it does not change for large numbers in multistage systems. One important result that follows immediately from this observation is that this fixed delay for large numbers explains the time shift. Additionally, depending on the stage number and the duration of the epidemic disease, the distance between the points where each infectious stage reaches its maximum is found approximately both graphically and qualitatively for both systems. Variations of the time shift, the maximum point of the sum of all infectious stages, and the in ection point of the removed stage are observed subject to the stage number N and it is shown that these variations stay unchanged for greater values of N.
- Published
- 2019
7. Propagation of Lamb waves in an elastic layer with irregular surfaces
- Author
-
Ahmetolan, Semra, Peker-Dobie, Ayşe, Deliktas Özdemir, Ekin, and Çağlayan, Esra
- Published
- 2023
- Full Text
- View/download PDF
8. Existence of solitary SH waves in a heterogeneous elastic two-layered plate
- Author
-
Deliktas-Ozdemir, Ekin, Ahmetolan, Semra, and Tuna, Dicle
- Published
- 2022
- Full Text
- View/download PDF
9. A Susceptible–Infectious (SI) model with two infective stages and an endemic equilibrium
- Author
-
Ahmetolan, Semra, Bilge, Ayse Humeyra, Demirci, Ali, and Dobie, Ayse Peker
- Published
- 2022
- Full Text
- View/download PDF
10. Modulated periodic wavetrains in the spherical Gardner equation
- Author
-
Aslanova, Gunay, Demirci, Ali, and Ahmetolan, Semra
- Published
- 2022
- Full Text
- View/download PDF
11. Undular bores in the (3+1) dimensional mKP equation
- Author
-
Ozdemir, Nese, primary, Demirci, Ali, additional, and Ahmetolan, Semra, additional
- Published
- 2023
- Full Text
- View/download PDF
12. Harmonic resonance phenomena on nonlinear SH waves
- Author
-
Ahmetolan, Semra, Özdemir, Neşe, Peker Dobie, Ayşe, Demirci, Ali, Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Matematik Bölümü, Işık University, Faculty of Engineering and Natural Sciences, Department of Mathematics, and Özdemir, Neşe
- Subjects
Modulation ,Collision ,Nonlinear elasticity ,Solitions ,Perturbation methods ,Solitary waves ,Finite-amplitude waves ,Nonlinear waves - Abstract
The interaction of shear horizontal (SH) waves in a two layered elastic medium and its mth harmonic component is studied. The dispersion relation is analysed to obtain the wave number-phase velocity pairs where the third and fifth harmonic resonance phenomena emerge. By employing an asymptotic perturbation method it is shown that the balance between the weak nonlinearity and dispersion yields a coupled nonlinear Schrödinger (CNLS) equation for the slowly varying amplitudes of the fundamental wave and its fifth harmonic component. The nonlinearity effects of the materials and the ratio of layers’ thicknesses on the linear instabilities of solutions and the existence of solitary waves are examined. Publisher's Version Q4 WOS:000964298900002
- Published
- 2023
13. On the propagation of nonlinear SH waves in a two-layered compressible elastic medium
- Author
-
Ahmetolan, Semra, Peker-Dobie, Ayse, and Demirci, Ali
- Published
- 2019
- Full Text
- View/download PDF
14. Nonlinear interaction of co-directional shear horizontal waves in a two-layered elastic medium
- Author
-
Ahmetolan, Semra and Demirci, Ali
- Published
- 2018
- Full Text
- View/download PDF
15. Karbon nanotüp örüntülü polymer silindirik kabukların eksenel yük etkisi altında burkulması
- Author
-
AVEY, Mahmure, KADIOĞLU, Fethi, and AHMETOLAN, Semra
- Subjects
Nanocomposite ,Cylindrical shell ,Buckling ,Critical axial load ,Engineering, Multidisciplinary ,Mühendislik, Ortak Disiplinler ,Nanokompozit ,Silindir Kabuk ,Burkulma ,Kritik eksenel yük - Abstract
In this article, the buckling of carbon nanotube (CNT) patterned cylindrical shells subjected to axial compressive load is presented within the framework of shear deformation theory (SDT). The material properties of nanocomposites change as a linear function depending on the thickness coordinate. The basic equations of cylindrical shells with CNT pattern are derived based on Donnell type shell theory and the critical axial load expression is obtained within the framework of SDT by applying Galerkin method. The effects of transverse shear deformations on the critical axial load of functionally graded CNT patterned cylindrical shells are investigated by changing CNT patterns, volume fraction ratio and shell parameters., Bu makalede, eksenel basınç yüküne maruz kalan karbon nanotüp (KNT) örüntülü silindirik kabukların burkulması, kayma deformasyon teorisi (KDT) çerçevesinde sunulmaktadır. Nanokompozitlerin malzeme özellikleri kalınlık koordinatına bağlı olarak lineer fonksiyon şeklinde değişmektedir. KNT örüntülü silindirik kabukların temel denklemleri Donnell tipi kabuk teorisi baz alınarak türetilmekte ve Galerkin yöntemi uygulanarak kritik eksenel yük ifadesi KDT çerçevesinde elde edilmektedir. Enine kayma deformasyonlarının fonksiyonel olarak derecelendirilmiş (FD) KNT örüntülü silindirik kabukların kritik eksenel yük değerlerine etkileri, KNT örüntüleri, hacim kesir oranı ve kabuk parametreleri değiştirilerek araştırılmaktadır.
- Published
- 2022
16. Nonlinear modulation of SH waves in an incompressible hyperelastic plate
- Author
-
Ahmetolan, Semra and Teymur, Mevlut
- Published
- 2007
- Full Text
- View/download PDF
17. What can we estimate from fatality and infectious case data using the Susceptible-Infected-Removed (SIR) model? a case study of Covid-19 pandemic
- Author
-
Ergönül, Mehmet Önder (ORCID 0000-0003-1935-9235 & YÖK ID 110398), Ahmetolan, Semra; Bilge, Ayşe Hümeyra; Demirci, Ali; Peker-Dobie, Ayşe, School of Medicine, Ergönül, Mehmet Önder (ORCID 0000-0003-1935-9235 & YÖK ID 110398), Ahmetolan, Semra; Bilge, Ayşe Hümeyra; Demirci, Ali; Peker-Dobie, Ayşe, and School of Medicine
- Abstract
The rapidly spreading Covid-19 that affected almost all countries, was first reported at the end of 2019. As a consequence of its highly infectious nature, countries all over the world have imposed extremely strict measures to control its spread. Since the earliest stages of this major pandemic, academics have done a huge amount of research in order to understand the disease, develop medication, vaccines and tests, and model its spread. Among these studies, a great deal of effort has been invested in the estimation of epidemic parameters in the early stage, for the countries affected by Covid-19, hence to predict the course of the epidemic but the variability of the controls over the course of the epidemic complicated the modeling processes. In this article, the determination of the basic reproduction number, the mean duration of the infectious period, the estimation of the timing of the peak of the epidemic wave is discussed using early phase data. Daily case reports and daily fatalities for China, South Korea, France, Germany, Italy, Spain, Iran, Turkey, the United Kingdom and the United States over the period January 22, 2020–April 18, 2020 are evaluated using the Susceptible-Infected-Removed (SIR) model. For each country, the SIR models fitting cumulative infective case data within 5% error are analyzed. It is observed that the basic reproduction number and the mean duration of the infectious period can be estimated only in cases where the spread of the epidemic is over (for China and South Korea in the present case). Nevertheless, it is shown that the timing of the maximum and timings of the inflection points of the proportion of infected individuals can be robustly estimated from the normalized data. The validation of the estimates by comparing the predictions with actual data has shown that the predictions were realized for all countries except USA, as long as lock-down measures were retained., NA
- Published
- 2020
18. On the Time Shift Phenomena in Epidemic Models
- Author
-
Peker-Dobie, Ayse, primary, Demirci, Ali, additional, Bilge, Ayse Humeyra, additional, and Ahmetolan, Semra, additional
- Published
- 2020
- Full Text
- View/download PDF
19. What Can We Estimate From Fatality and Infectious Case Data Using the Susceptible-Infected-Removed (SIR) Model? A Case Study of Covid-19 Pandemic
- Author
-
Ahmetolan, Semra, primary, Bilge, Ayse Humeyra, additional, Demirci, Ali, additional, Peker-Dobie, Ayse, additional, and Ergonul, Onder, additional
- Published
- 2020
- Full Text
- View/download PDF
20. Improved Hardy and Rellich type inequalities with two weight functions
- Author
-
Ahmetolan, Semra, primary and Kombe, Ismail, additional
- Published
- 2018
- Full Text
- View/download PDF
21. İki Tabakalı Elastik Bir Ortamda Sh Dalgalarının Beşinci Harmonik Rezonansı
- Author
-
Özdemir, Neşe and Ahmetolan, Semra
- Abstract
Konferans Bildirisi -- Teorik ve Uygulamalı Mekanik Türk Milli Komitesi, 2015, Conference Paper -- Theoretical and Applied Mechanical Turkish National Committee, 2015, Bu çalışmada, düzgün kalınlıklara sahip farklı hiperelastik malzemelerden oluşan iki tabakalı elastik bir ortam içerisinde yayılan nonlineer SH dalgalarının harmonik rezonans etkileşimi problemi ele alınmıştır. Serbest yüzeylerde gerilmelerin olmadığı, tabakalar arası ara yüzeyde ise yer değiştirmelerin ve gerilmelerin sürekli olduğu kabul edilmiştir. Dalgaların harmonik rezonans etkileşimi problemi bir asimptotik pertürbasyon metodu kullanılarak incelenmiştir. Temel dalganın faz hızı ile onun m.ci harmoniği bir kritik dalga sayısı, kc’de çakışırsa m. harmonik rezonans durumu ortaya çıkar. Bu durumda temel dalga ile onun m.ci harmonik bileşeni arasında enerji transferi meydana gelir. Bu yüzden harmonik rezonansın varolduğu durumda, uniform asimptotik açılımda, ilk mertebe problemde etkileşime girecek olan harmonik terim dahil edilerek incelemeye devam edilmesi gerekir. Bu çalışmada temel dalga ile onun beşinci harmoniğinin etkileşim problemi incelenmektedir. Harmonik rezonans incelemesine uygun şekilde yürütülen asimptotik analiz neticesinde temel dalga ve onun beşinci harmoniğinin etkileşimine ait birinci mertebe yavaş değişen genlik fonksiyonlarının değişimini asimptotik olarak karakterize eden kuple nonlineer Schrödinger (KNLS) denklemi elde edilmiştir., In this work, the harmonic resonance of SH (shear horizontal) waves in a two layered elastic plate of uniform thickness is considered. Both layers are assumed to be homogeneous, isotropic and incompressible elastic and having different mechanical properties. Stress and displacements are continuous at the interface of the layers. Also, free surfaces of the layers are free of tractions. Under these assumptions, the equations of motion and boundary conditions governing the propagation of nonlinear SH waves in this elastic media are derived. Then, the occurence of harmonic resonances and the fifth harmonic resonance are examined in detail. It is shown that the governing system for the slowly varying amplitudes of the fundamental wave and its fifth harmonic is a pair of two coupled NLS (nonlinear Schrödinger) equations.
- Published
- 2015
22. Hardy and Rellich type inequalities with two weight functions
- Author
-
Ahmetolan, Semra, primary and Kombe, Ismail, additional
- Published
- 2016
- Full Text
- View/download PDF
23. Elastik Bir Tabakada NonlineerSH Dalgalarının Etkileşimi
- Author
-
Akman, Esra and Ahmetolan, Semra
- Abstract
Konferans Bildirisi -- Teorik ve Uygulamalı Mekanik Türk Milli Komitesi, 2011, Conference Paper -- Theoretical and Applied Mechanical Turkish National Committee, 2011, Bu çalışmada, düzgün kalınlıklı hiperelastik malzemeden oluşan bir tabaka içerisinde aynı yönde ilerleyen SH dalgalarının etkileşimi problemi ele alınmıştır. Serbest yüzeyde gerilmelerin olmadığı kabul edilmiştir. Dalgaların etkileşimi problemi bir asimptotik pertürbasyon metodu olan çoklu ölçekler metodu kullanılarak incelenmiştir. Asimptotik analiz neticesinde aynı yönde ilerleyen ve birbirleri ile etkileşen dalgalara ait birinci mertebe yavaş değişen genlik fonksiyonlarının değişimini asimptotik olarak karakterize eden küple nonlineer Sclırödinger denklemleri (KNLS) elde edilmiştir. Sonrasında KNLS denklemlerinin çözümlerinin kararsızlıkları ve solitary dalga çözümlerinin varlığı incelenmiştir.
- Published
- 2011
24. Propagation of surface SH waves on a half space covered by a nonlinear thin layer
- Author
-
Teymur, Mevlut, primary, Demirci, Ali, additional, and Ahmetolan, Semra, additional
- Published
- 2014
- Full Text
- View/download PDF
25. Nonlinear Propagation Of Rayleigh Waves In A Layered Elastik Half Space
- Author
-
Ahmetolan, Semra, Teymür, Mevlüt, Matematik Mühendisliği, and Mathematics Engineering
- Subjects
Nonlineer Schrödinger denklemi ,Nonlineer Rayleigh dalgaları ,Nonlineer self modulasyon ,Nonlinear Schrödinger Equation ,Nonlinear Rayleigh waves ,Nonlinear self modulation - Abstract
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2004, Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2004, Bu çalışmada, farklı elastik özelliklere sahip sonlu ve düzgün kalınlıklı bir tabaka ile kaplı elastik bir yarım uzayda küçük fakat sonlu genlikli, Rayleigh dalgalarına benzer, nonlineer yüzey dalgalarının yayılması, bir asimptotik pertürbasyon yöntemi kullanılarak incelenmiştir. Tabaka ve yarım uzayın homojen, izotrop ve sıkışabilir nonlineer elastik malzemelerden oluştukları varsayılmıştır. Bu incelemede tabakada yayılan boyuna ve enine dalgaların faz hızları c1L ve c1T ile yarım uzayda yayılan boyuna ve enine dalgaların faz hızları c2L ve c2T arasında c1T< c1L< c2T< c2L eşitsizliğinin sağlandığı ve dalgaların faz hızı c’nin, c1L, In this work, the propagation of small but finite amplitude nonlinear Rayleigh like surface waves in an elastic half-space covered by a different elastic layer of uniform thickness is examined by an asymptotic perturbation method. The constituent materials of the layer and half space are assumed to be homogeneous, isotropic and compressible hyperelastic. In the analysis, it is assumed that between the longitudinal and shear wave velocities of the layer, c1L and c1T, and of the half space, c2L and c2T, the inequality c1T< c1L< c2T< c2L is valid and also the phase velocity c of the waves satisfies the inequality c1L, Doktora, PhD
- Published
- 2004
26. İki tabakalı elastik ortamlarda nonlineer dalga modülasyonu
- Author
-
Ahmetolan, Semra, Teymür, Mevlüt, and Diğer
- Subjects
Boundary value problems ,Matematik ,Wave propagation ,Mathematics ,Wave modulation - Abstract
ÖZET Bu çalışmada iki tabakalı bir elastik ortamda nonlineer dalgaların yayılmasını modelleyen bir sınır değer probleminin asimptotik çözümü inşaa edilmiştir. Çalışma beş bolümden oluşmaktadır. İlk bölümde önce elastik dalga yayılması problemlerinin tarihi gelişimi kısaca özetlenmiştir, ikinci bölümde. nco-IIookean malzemelerden meydana gelen iki tabakalı bir ortamda genelleştirilmiş kayma dalgalarını yöneten hareket denklemleri ve onlara eşlik eden sınır koşullan verilmiştir. Üçüncü bölümde böyle bir ortamda nonlineer kayma dalgalarının modülasyonu bir singüler pertürbasyon yöntemi yardımı ile incelenmiş ve bu dalgaların self modülasyonunun asimptotik olarak bir nonlineer Schrödinger (NLS) denklemi ile karakterize edilebileceği gösterilmiştir. Bilindiği gibi NLS denkleminin çözümlerinin davranışları, denklemin katsayılarının işaretine kuvvetli olarak bağlıdır. Çözümlerin nonlineerliğe bağlılığını incelemek için, tabakaları meydana getiren malzemelerin lineer özellikleri sabit tutulmuş, nonlineer sabitler değiştirilerek katsayıların dalga sayısına göre değişimleri elde edilmiştir. Bu sonuçlardan zarf soliton tipi dalgaların varlığının tabakalı yarım uzayın nonlineer yapısına bağlı olduğu görülmüştür. Ayrıca, c/ ve c-ı tabakalardaki lineer yayılma hızlarını, c 'de sistemdeki kayma dalgalarının faz hızını göstermek üzere c/ < c < c-ı için bulunan sonuçların, ikinci tabakanın kalınlığı sonsuza götürüldüğünde, daha önce tabakalı bir yarım uzayda Love dalgalarının modülasyonu için bulunan sonuçlara dönüştüğü gösterilmiştir. NONLINEAR WAVE MODULATION IN A TWO LAYERED ELASTIC MEDIUM SUMMARY In tli is work, we have considered Uie propagation of small but finite am plitude waves in a plate of uniform thickness which is composed of two layers occupying the regions A = {(XuX2,X3)/0 < X2 < hx,-oo < (XUX3) < 00} (la) and P2 = {{XUX2,X3)/ - h2 < X2 < 0,-oo < (XUX3) < 00} (16) in the reference frame Xk, k = 1,2,3; where Xk denotes the material co ordinates of a point referred to the rectangular Cartesian system of axes. It is assumed that the layers have different material characteristics and stress and displacements are continuous at the interface X2 - 0 and the bound aries X2 - h/ and X2 = - h2 are free of tractions. Then, a shear horizantal (SH) wave described by the equations xk = XK8kK + u.:;(XA, t)6k-, v = 1, 2 (2) is supposed to propagate along the Xi-axis in the media. In (2) the super- cipts v refers to the layer P/ and P2 respectively; u^ is the displacement of a particle in the ^-direction in a layer, Xk are the spatial rectangular coordinates, t is the time and 8ki< is the Kronecker symbol. The summa tion convention on repeated indiced is implied in (2) and in the sequel of this section, and Latin and Greek indices have respective ranges (1,2,3) and (1,2) Let tki be the Cauchy stress tensor field accompanying the deformation field (2); in the absence of body forces, the equations of motion in the reference state take the following forms iv v iv ri ıv u ıu n lll,l ~~ u3,llll,3 - u.> l22,2 u3,2l22,3 ~ u ^13,1 + ^23,2 `I` ''33,3 = PoU3 (o.C, 0, C) where subscripts preceded by a comma indicate partial differention with re spect to coordinates Xk and an over-dot represents the partial differentiation with respect to t. When the constituent materials of the media are hyperelastic then there exit strain energy functions £` characterizing the mechanical properties of the materials. If the material are homogeneous and isotropic then E` are functions of the principle invariants of the Finger deformation tensor c^1 = Xk,K%i,K ? VIHere it is assumed that the constituent materials are homogeneous, isotropic and incompressible and their strain energy functions are of the form E` = E`(7`). (4) Where r = ire`1 = 3 + «3V.3.A- (5) This class of materials is called generalised neo-llookean and for such a material the stress constitutive equation can be expressed as tki = -phi + W (6) where p(Xx,t) is an arbitrary pressure function, and $ = 2Ş>0. (7) For the deformation field (2) the component of the Cauchy stress tensor arc found to be tap = 0, t a3 = *«3l«, *33 = («3,1 + Uh) $ > P = $ (8) Hence it is seen that the first two equations of (3) are satisfied identically, and the third gives A{$( Dibi) + _L(*< A = p^ 8XK dX> ^ dYK dY' Podi2' (9) dX{ dX)+dY{ dY' PodV { ' where X = Xi, Y = X2, Z = X3, u = ul, v = u2. (11) The conditions of vanishing tractions on the free surfaces and continuity of stresses and displacements at the interface yield the following boundary con ditions accompanying the equations (9-10); du dY=° °n u = v and * 0 which measures the degree of nonlinearity and, at the same time, the narrowness of the side-band width of the carrier wave number centered around a specific wave number; u = ^2 cn«n(*o, si, «a, y, *o, tuU) n=l oo v = JŞ2envn(x0,xux2,y,t0,tı,t2) (15) n=î where Xi = iX, U = cH (16) are the multiple scales introduced to specify the slow variations of the ampli tude compared with the phase of the carrier waves, and y = Y. Hence, writing first the equations and boundary conditions (9-14), in terms of the new independent variables (3.9) and collecting the terms of like powers in e yield a hierarchy of equations and boundary conditions from which it is possible to determine un and vn successively. Up to third order in e these are given as follows 0(e): 41)«i = 0, 4V = 0 (17a, b) -5- = 0 on y = hi (17c) ay ıtı = v/ and - 7- - = 0 on y - 0 (17d, e) dy dy (17/) (18a, b) (18c) on y = 0, (18a*, e) (18/) uy 0(e3) : 4X)«3 = C^u2 + 41)«i + »iJvo(ut) (19a) viiiC{2)vz = Ö2)v2 + £22)Vl + n2JV0(ı>ı) (196) -5- = 0 on y = /ii (19c) u3 = u3 and ^ = 0 on y = -h2 (19/) where £0 ', £0 ',... C2 are linear and Q0 ve jV`0 are nonlinear differential operators defined respectively as C^^-^±-c2(^t + ^t) *-12 L° ^~ dig H&rg + oyW ' M ^U of ^ c2 ^ 1 **-[Ş+«â-î(3+ı&]' (20) *w-(£)'+(S)'. Here c`, 1/ = 1,2 are the velocities of shear waves, and nv are nonlinear material parameters of the layers and they are defined as; cl = HuİPvQ, n` = 2EW`(3)/rt (21) and /z` = *`(3), 7 = ^1, Pv = n`/4 (22) Note that, as usual in these types of asymptotic analysis, the problems at each step are linear. Moreover the first order problem is simply the clasic linear wave problem. Accordingly we take the solutions of (17a,b), for ci < c2 < c, as; 00 Ul = Y^{Ai)(x^x^tut2)eilkny + B{t/xl,x2,tuh)e-ilkrnv}J1'1, + c.c. (23a) /=i 00 t;1 = ^{C{'î(xı,xa,f1,i3)c,7^ + i?S,?(sı,x3, = kx0-u;t0, pu = (c2/cl-l)1/2 (24) IXand A/, B/, C/' and D[' are functions of slow scales (xı,x2,tı,i2), k is the wave number, u> is the angular frequency, c = uj/k is the phase velocity and c.c. denotes the complex conjugate to the preceding terms. Then the substitution of (23a,b) into the boundary conditions (17c-f) yields where and W/ = (25) (26) (27) Note that detWj = 0 gives the dispersion relation of the linear waves, i.e. pi tan(fe/iipi) + 7p2 tan(fe/i2p2) = 0. (28) Since the harmonic resonance phonemona is excluded in the analysis then for I > 2 detW,^0 (29) Hence the solutions of the homogenous algebraic equations (30) are found to be V^) = A1{xt,x2,tut2)R U?) = 0forZ>2 (30) where Ai is a complex function repesenting the first order slowly varying am plitude of the wave modulation, to be determined in higher order perturbation problems, and R is a column vector satisfying W!R = 0 (31) The solutions u2 and v2 of the second order problem can be sought as u2 = u2 + u2, v2 = v2 + v2 (32) where v,2 and v2 are the particular solutions of nonhomogeneous differential equations (18a,b) while u2 and v2 are the solutions of the homogeneous equa tions 42)«2 = 0, 42)?2 = 0 (33) satisfying the following nonhomogeneous boundary conditions defined from (18c-f) by considering the decompositions (32); du2 _ dv,2 dy ~ dy on y = ht, (34a)u2 - v2 = -(u2 - v2) and (346) du2 dv2 (dü2 dv (Ou2 ov2/ on y = -h2. (34d) dy dy / dy dy dv2 dv2 dy dy The solutions u2 and v2 are found by using the method of undetermined coef ficients. For u2 and u2 as in the first order problem we let oo «2 = X)[4',(^,^,ii,Me^,* + ^(x1)x3,«I,*0e-,7fcp,v]e`* + c.c. (35a) (=1 oo «a = ]T)[Cf (*i, *2, U ' t2Wlkp2V + D{l/xx, x2> U, t2y-iXkTYl* + c.c. (356) Then the use of (35) together with the solutions Jl2 and v2 in (34a-d) yields WiU2l) = b2l) (36) where Since det Wi = 0 and b^ ' ^ 0 in order that the equation (36) is algebraically solvable for U^ ' the compatibility condition L.bt = 0 (38) must be satisfied where L is a row vector defined by LW1=0. (39) The condition (38) leads to the result ^+^ = 0, V. = % (40) dh 9 dxx ' ` dk r(i) and then XJ2 is found to be where A2 = A2(xl,x2,ti,t2) is a complex function representing the second order slowly varying amplitude of the wave modulation, and it can be de termined from higher-order perturbation problems. But, since this work is centered around the weakly nonlinear waves the aim is here to obtain just the uniformly valid first-order solution. Therefore it is sufficient to obtain A/, and this will be done at the third order. (40) only implies that the amplitude XIremains constant in a frame of reference moving with the group velocity Vg of waves. That is, A{=Ax{xx-Vgti,x2,t2) (42) Note that, for / > 2 since it is assumed that detWj ^ 0 for / ^ 1 and since b2 = 0 for I ^ 1, then l4'J = 0 for / > 2 (43) Thus the solution of the second order perturbation problem is completed. The solutions of the third order problem can be decomposed as in the second order, i.e. «3 = «3 + «3 ve v3 = v3 + v3 (44) The particular solutions of the nonhomogeneous differential equations (19a,b) are found by the method of undetermined coefficients. For «3 and v3 as in the previous case we let 00 «3 = ^[40(^,^, 0 or FA < 0 is impor tant in determining how a given initial data will evolve for long times for the asymptotic wave field governed by the NLS equation. An initial disturbance vanishing a.s £-* oo tends to become a series of envelope solitary waves if TA > 0, while it evolves into the decaying oscillations if FA < 0. As the properties of solutions strongly depend on the sign of the product TA, the variation of it with the nondimensional wave number kh/ is evaluated for the lowest branch of the dispersion relation giving appropriate values to the material constants. As a result of the numerical evaluation of TA for fixed linear material properties, it is observed that the envelope solitary waves may exist depending on the nonlinear constitution of the layered media. Xlll 39
- Published
- 1996
27. A sharp uncertainty principle and Hardy-Poincaré inequalities on sub-Riemannian manifolds
- Author
-
Ahmetolan, Semra, primary and Kombe, Ismail, additional
- Published
- 2012
- Full Text
- View/download PDF
28. Nonlinear modulation of SH waves in an incompressible hyperelastic plate
- Author
-
Ahmetolan, Semra, primary and Teymur, Mevlut, additional
- Published
- 2006
- Full Text
- View/download PDF
29. Tabakalı elastik bir yarım uzayda nonlineer Rayleigh dalgalarının yayılması.
- Author
-
AHMETOLAN, Semra and TEYMÜR, Mevlüt
- Published
- 2003
30. What Can We Estimate From Fatality and Infectious Case Data Using the Susceptible-Infected-Removed (SIR) Model? A Case Study of Covid-19 Pandemic
- Author
-
Semra Ahmetolan, Onder Ergonul, Ayse Peker-Dobie, Ali Demirci, Ayse Humeyra Bilge, Bilge, Ayşe Hümeyra, Peker-Dobie, Ayşe, Ergönül, Mehmet Önder (ORCID 0000-0003-1935-9235 & YÖK ID 110398), Ahmetolan, Semra, Demirci, Ali, and School of Medicine
- Subjects
Medicine ,General and internal medicine ,medicine.medical_specialty ,Coronavirus disease 2019 (COVID-19) ,Epidemiology ,01 natural sciences ,Quantitative Biology - Quantitative Methods ,03 medical and health sciences ,0302 clinical medicine ,0103 physical sciences ,Pandemic ,medicine ,Parameter estimation ,030212 general & internal medicine ,010306 general physics ,China ,Quantitative Biology - Populations and Evolution ,Quantitative Methods (q-bio.QM) ,COVID-19 ,Mathematical models ,SIR model ,Estimation ,lcsh:R5-920 ,Populations and Evolution (q-bio.PE) ,General Medicine ,Geography ,FOS: Biological sciences ,Early phase ,Epidemic model ,lcsh:Medicine (General) ,Basic reproduction number ,Demography - Abstract
The rapidly spreading Covid-19 that affected almost all countries, was first reported at the end of 2019. As a consequence of its highly infectious nature, countries all over the world have imposed extremely strict measures to control its spread. Since the earliest stages of this major pandemic, academics have done a huge amount of research in order to understand the disease, develop medication, vaccines and tests, and model its spread. Among these studies, a great deal of effort has been invested in the estimation of epidemic parameters in the early stage, for the countries affected by Covid-19, hence to predict the course of the epidemic but the variability of the controls over the course of the epidemic complicated the modeling processes. In this article, the determination of the basic reproduction number, the mean duration of the infectious period, the estimation of the timing of the peak of the epidemic wave is discussed using early phase data. Daily case reports and daily fatalities for China, South Korea, France, Germany, Italy, Spain, Iran, Turkey, the United Kingdom and the United States over the period January 22, 2020–April 18, 2020 are evaluated using the Susceptible-Infected-Removed (SIR) model. For each country, the SIR models fitting cumulative infective case data within 5% error are analyzed. It is observed that the basic reproduction number and the mean duration of the infectious period can be estimated only in cases where the spread of the epidemic is over (for China and South Korea in the present case). Nevertheless, it is shown that the timing of the maximum and timings of the inflection points of the proportion of infected individuals can be robustly estimated from the normalized data. The validation of the estimates by comparing the predictions with actual data has shown that the predictions were realized for all countries except USA, as long as lock-down measures were retained., NA
- Published
- 2020
31. Harmonic resonance of nonlinear SH waves on a two layered elastic medium
- Author
-
Özdemir, Neşe, Ahmetolan, Semra, and Matematik Mühendisliği Ana Bilim Dalı
- Subjects
Matematik ,Mathematics - Abstract
Bu çalışmada, düzgün kalınlıklara sahip farklı hiperelastik malzemelerden oluşan iki tabakalı elastik bir ortam içerisinde yayılan nonlineer SH dalgalarının harmonik rezonans etkileşimi problemi ele alınmıştır. Serbest yüzeylerde gerilmelerin olmadığı, tabakalar arası arayüzeyde ise yerdeğiştirmelerin ve gerilmelerin sürekli olduğu kabul edilmiştir. Dalgaların harmonik rezonans etkileşimi problemi bir asimptotik pertürbasyon metodu kullanılarak incelenmiştir. Temel dalganın faz hızı ile onun m.ci harmoniği bir kritik dalga sayısı, kc,'de çakışırsa m. harmonik rezonans durum ortaya çıkar. Bu durumda temel dalga ile onun m.ci harmonik bileşeni arasında enerji transferi meydana gelir. Bu yüzden harmonik rezonansın varolduğu durumda, uniform asimptotik açılımda, ilk mertebe problemde etkileşime girecek olan harmonik terim dahil edilerek incelemeye devam edilmesi gerekir. Bu çalışmada temel dalga ile onun 5. harmoniğinin etkileşim problem incelenmektedir. Harmonik rezonans incelemesine uygun şekilde yürütülen asimptotik analiz neticesinde temel dalga ve onun 5.ci harmoniğinin etkileşimine ait birinci mertebe yavaş değişen genlik fonksiyonlarının değişimini asimptotik olarak karakterize eden kuple nonlineer Schrödinger (KNLS) denklemi elde edilmiştir. In this work, the harmonic resonance of SH (shear horizontal) waves in a two layered elastic plate of uniform thickness is considered. Both layers are assumed to be homogeneous, isotropic and incompressible elastic and having different mechanical properties. Stress and displacements are continuous at the interface of the layers. Also, free surfaces of the layers are free of tractions. Under these assumptions, the equations of motion and boundary conditions governing the propagation of nonlinear SH waves in this elastic media are derived. Then, the occurence of harmonic resonances and the fifth harmonic resonance are examined in detail. It is shown that the governing system for the slowly varying amplitudes of the fundamental wave and its fifth harmonic is a pair of two coupled NLS (nonlinear Schrödinger) equations. 71
- Published
- 2015
32. Nonlineer elastik bir tabakada SH dalgalarının etkileşimi
- Author
-
Akman, Ayşe Esra, Ahmetolan, Semra, and Matematik Mühendisliği Ana Bilim Dalı
- Subjects
Wave equations ,Matematik ,Wave propagation ,Elastic layer ,Schrödinger equation ,Coupled ,Mathematics - Abstract
Bu çalışmada, düzgün kalınlıklı hiperelastik malzemeden oluşan bir tabaka içerisinde aynı yönde ilerleyen SH dalgalarının etkileşimi problemi ele alınmıştır. Serbest yüzeylerde gerilmelerin olmadığı kabul edilmiştir. Dalgaların etkileşimi problemi bir asimptotik pertürbasyon metodu olan değişik ölçekler metodu kullanılarak incelenmiştir. Asimptotik analiz neticesinde aynı yönde ilerleyen ve birbirleri ile etkileşen dalgalara ait birinci mertebe yavaş değişen genlik fonksiyonlarının değişimini asimptotik olarak karakterize eden kuple nonlineer Schrödinger (KNLS) denklemleri elde edilmiştir. Sonrasında KNLS denklemlerinin çözümlerinin kararsızlıkları ve solitary dalga çözümlerinin varlığı incelenmiştir. Çalışmamız dört bölümden oluşmaktadır:Giriş bölümünde, elastik dalgalarının yayılmasına yönelik gelişimin tarihi kısaca verilmiştir. İkinci kısımda ise ilk olarak lineer malzemeden oluşan bir tabakada aynı yönde ilerleyen SH dalgalarının yayılımı problemi incelenmiş ve lineer dalgalara ait dispersiyon bağıntısı türetilmiştir. Bilindiği gibi cT ortamda yayılan lineer dalgaların yayılma hızını, c ise SH dalgalarının faz hızını göstermek üzere, tabakada bu tip dalgaların yayılabilmesi için cT < c eşitsizliğinin gerçeklenmesi gerekmektedir. Bu koşul altında, daha sonra nonlineer malzemeden oluşan bir elastik tabakada aynı yönde ilerleyen iki SH dalgasının etkileşimi problemi ele alınmış ve bu problem bir asimptotik pertürbasyon metodu olan değişik ölçekler metodu yardımıyla incelenmiştir. Etkileşen dalgalara ilişkin birinci mertebe yavaş değişen genlik fonksiyonlarını asimptotik olarak karakterize eden nonlineer denklem sistemi, Kuple Nonlineer Schrödinger (KNLS) denklem sistemi, türetilmiştir.Son yıllarda, KNLS denklem sistemi üzerine, denklemlerin solitary dalga ve periyodik çözümleri ve bunlara ilişkin lineer kararlılık analizinin incelendiği birçok çalışma bulmak mümkündür. Solitary zarf çözümlerinin bulunmasında, KNLS sistemini oluşturan denklemlerin lineer ve nonlineer katsayılarının işaretleri büyük önem taşımaktadır. Bölüm 3.3' de bu çalışmaların bazılarından bahsedilerek, solitary dalga çözümlerinin varlığı ve ortamı oluşturan malzemenin nonlineerliğinin aynı yönde ilerleyen ve eşit grup hızlarına sahip dalgaların yayılımı üzerindeki etkisi incelenmiştir.Dördüncü bölümde elde edilen sonuçlar tartışılmıştır. In this work, the nonlinear interaction of two co-directional shear horizontal (SH) waves in a homogeneous, isotropic elastic plate of uniform thickness is considered. The plate of uniform thickness occupies the region,(1)in the reference frame (X,Y,Z) and it is assumed that the free boundaries Y=±h are free of traction. It is supposed that SH waves propagate along the positive X axis and the displacement of a particle in Z direction. In this case, the wave motionx=X, y=Y, z=Z+u(X,Y,t) (2)can be defined in this form. u is the displacement function of X,Y and t, the time. The governing equation of motion which the terms are not higher than third degree and the boundary conditions can be written as follows;in P(3)on (4)where. (5)In the equation (3), is the propagation velocity of linear waves in the plate. Here, µ is the linear shear modulus of the layer, and ? is the density of the layer. is nonlinear material constant of the constituent material. In the plate, when the material is hardening, then material is softening.To investigate the interaction of two co-directional SH waves which the amplitudes are assumed to be small but finite, the method of multiple scales is used. For this method we introduce the new independent variables,, and ,(i=0,1,2) (6)where {x1,x2,t1,t2} are slowly variables to describe slow variations of the amplitudes whereas {x0,y,t0} characterize the fast variables, and is a small parameter which measures the degree of nonlinearity. Now u is considered to be a function of these new variables and it is expanded in power of ? to the asymptotic series,(7)and we can arrange a transformation between old and new variables as follows:(8)Then writing the equation of motion in (3) and boundary conditions in (4) with considering the terms in (8) by applying (6) and using asymptotic expansion (7) with collecting the terms of some powers in ?, we find a hieararchy of problems which can be determined for un. First three perturbation problems can be given as following:in P (9)on (10)in P (11)on (12)in P (13)on (14)where the linear operators and and the nonlinear operators and are given as follows:,(15)These problems are linear at each step and the first order problem is simply the classical linear wave problem. In the analysis, for the propagation of SH waves, the phase velocity of waves should satisfy the inequalities,cT
- Published
- 2012
33. Propagation Of Nonlinear Sh Waves In An Incompressible Hyperelastic Plate Covered With A Thin Layer
- Author
-
Karul, Burcu Zehra Boza, Ahmetolan, Semra, Matematik Mühendisliği, and Mathematics Engineering
- Subjects
Thin Layer ,İnce Tabaka ,Nonlinear Waves ,Doğrusal olmayan dalgalar ,Asimptotik Pertürbasyon ,Asymptotic Perturbation - Abstract
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010, Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2010, Bu çalışmada malzeme özellikleri farklı ince tabaka ile kaplı bir sonlu tabakanın bulunduğu elastik bir tabakalı ortamda nonlineer SH dalgalarının yayılması problemi incelenmiştir. Farklı elastik malzemelerden oluşan sonlu ve düzgün kalınlıklı iki tabakanın bulunduğu elastik bir tabakalı ortamda nonlineer SH dalgalarının yayılmasını betimleyen hareket denklemleri ve sınır koşullarından yola çıkılmış, bu denklemler ve sınır koşulları ince tabaka varsayımı altında yaklaştırılmıştır. Yaklaşım sonucunda yalnızca alttaki sonlu tabakanın yerdeğiştirme fonksiyonu cinsinden yeni bir sınır değer problemi türetilmiştir. İnce tabaka yaklaşımı altında türetilen bu sınır değer problemi değişik ölçekler metodu kullanılarak asimptotik olarak incelenmiş ve bu dalgaların self modülasyonunun asimptotik olarak bir nonlineer Schrödinger (NLS) denklemi ile karakterize edilebileceği gösterilmiştir. Son olarak, bu yaklaşımının sonuçlarını tartışmak amacıyla, NLS denkleminin lineer ve nonlineer katsayılarının, seçilen malzeme modelleri için boyutsuz dalga sayıları ile değişimlerinin grafikleri çizilmiş ve bunlar sonlu kalınlıklı iki tabaka ve lineer ince tabaka sonuçları ile karşılaştırılmıştır., In this study, propagation of nonlinear SH waves in an elastic layered medium involving a finite plate covered with a thin layer with different material characteristics is considered. Departed from the equations of motion and boundary conditions describing the propagation of nonlinear SH waves in an elastic layered medium involving two finite plates with uniform thickness with different material characteristics and these equations and boundary conditions are approximated under thin layer assumption. As a result of this approximation, a new boundary value problem in terms of the substrate is reproduced. This boundary value problem derived under thin layer approximation is investigated asymptotically by employing the method of multiple scales and it is shown that, self modulation of these waves can be asymptotically characterized by nonlinear Schrödinger (NLS) equation. Then, to discuss the results of the approximation made, the graphs of the linear and nonlinear coefficients of the NLS equation versus dimensionless wavenumbers are drawn for the material models chosen and they are compared with the two layered plate and linear thin layer results., Yüksek Lisans, M.Sc.
- Published
- 2010
34. Propagation of nonlinear SH waves in an incompressible hyperelastic plate covered with a thin layer
- Author
-
Boza Karul, Burcu Zehra, Ahmetolan, Semra, and Matematik Mühendisliği Ana Bilim Dalı
- Subjects
Matematik ,Thin layer ,Waves ,Asymptotic ,Nonlinear ,Mathematics ,Perturbation - Abstract
Bu çalışmada malzeme özellikleri farklı ince tabaka ile kaplı bir sonlu tabakanın bulunduğu elastik bir tabakalı ortamda nonlineer SH dalgalarının yayılması problemi incelenmiştir. Farklı elastik malzemelerden oluşan sonlu ve düzgün kalınlıklı iki tabakanın bulunduğu elastik bir tabakalı ortamda nonlineer SH dalgalarının yayılmasını betimleyen hareket denklemleri ve sınır koşullarından yola çıkılmış, bu denklemler ve sınır koşulları ince tabaka varsayımı altında yaklaştırılmıştır. Yaklaşım sonucunda yalnızca alttaki sonlu tabakanın yerdeğiştirme fonksiyonu cinsinden yeni bir sınır değer problemi türetilmiştir. İnce tabaka yaklaşımı altında türetilen bu sınır değer problemi değişik ölçekler metodu kullanılarak asimptotik olarak incelenmiş ve bu dalgaların self modülasyonunun asimptotik olarak bir nonlineer Schrödinger (NLS) denklemi ile karakterize edilebileceği gösterilmiştir. Son olarak, bu yaklaşımının sonuçlarını tartışmak amacıyla, NLS denkleminin lineer ve nonlineer katsayılarının, seçilen malzeme modelleri için boyutsuz dalga sayıları ile değişimlerinin grafikleri çizilmiş ve bunlar sonlu kalınlıklı iki tabaka ve lineer ince tabaka sonuçları ile karşılaştırılmıştır. In this study, propagation of nonlinear SH waves in an elastic layered medium involving a finite plate covered with a thin layer with different material characteristics is considered. Departed from the equations of motion and boundary conditions describing the propagation of nonlinear SH waves in an elastic layered medium involving two finite plates with uniform thickness with different material characteristics and these equations and boundary conditions are approximated under thin layer assumption. As a result of this approximation, a new boundary value problem in terms of the substrate is reproduced. This boundary value problem derived under thin layer approximation is investigated asymptotically by employing the method of multiple scales and it is shown that, self modulation of these waves can be asymptotically characterized by nonlinear Schrödinger (NLS) equation. Then, to discuss the results of the approximation made, the graphs of the linear and nonlinear coefficients of the NLS equation versus dimensionless wavenumbers are drawn for the material models chosen and they are compared with the two layered plate and linear thin layer results. 85
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.