1. Deep learning approaches for seizure video analysis: A review.
- Author
-
Ahmedt-Aristizabal D, Armin MA, Hayder Z, Garcia-Cairasco N, Petersson L, Fookes C, Denman S, and McGonigal A
- Subjects
- Humans, Electroencephalography methods, Deep Learning, Seizures diagnosis, Seizures physiopathology, Video Recording methods
- Abstract
Seizure events can manifest as transient disruptions in the control of movements which may be organized in distinct behavioral sequences, accompanied or not by other observable features such as altered facial expressions. The analysis of these clinical signs, referred to as semiology, is subject to observer variations when specialists evaluate video-recorded events in the clinical setting. To enhance the accuracy and consistency of evaluations, computer-aided video analysis of seizures has emerged as a natural avenue. In the field of medical applications, deep learning and computer vision approaches have driven substantial advancements. Historically, these approaches have been used for disease detection, classification, and prediction using diagnostic data; however, there has been limited exploration of their application in evaluating video-based motion detection in the clinical epileptology setting. While vision-based technologies do not aim to replace clinical expertise, they can significantly contribute to medical decision-making and patient care by providing quantitative evidence and decision support. Behavior monitoring tools offer several advantages such as providing objective information, detecting challenging-to-observe events, reducing documentation efforts, and extending assessment capabilities to areas with limited expertise. The main applications of these could be (1) improved seizure detection methods; (2) refined semiology analysis for predicting seizure type and cerebral localization. In this paper, we detail the foundation technologies used in vision-based systems in the analysis of seizure videos, highlighting their success in semiology detection and analysis, focusing on work published in the last 7 years. We systematically present these methods and indicate how the adoption of deep learning for the analysis of video recordings of seizures could be approached. Additionally, we illustrate how existing technologies can be interconnected through an integrated system for video-based semiology analysis. Each module can be customized and improved by adapting more accurate and robust deep learning approaches as these evolve. Finally, we discuss challenges and research directions for future studies., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF