1. Implementing deep learning models for the classification of Echinococcus multilocularis infection in human liver tissue
- Author
-
Mihaly Sulyok, Julia Luibrand, Jens Strohäker, Peter Karacsonyi, Leonie Frauenfeld, Ahmad Makky, Sven Mattern, Jing Zhao, Silvio Nadalin, Falko Fend, and Christian M. Schürch
- Subjects
Echinococcus ,Deep learning ,Histology ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background The histological diagnosis of alveolar echinococcosis can be challenging. Decision support models based on deep learning (DL) are increasingly used to aid pathologists, but data on the histology of tissue-invasive parasitic infections are missing. The aim of this study was to implement DL methods to classify Echinococcus multilocularis liver lesions and normal liver tissue and assess which regions and structures play the most important role in classification decisions. Methods We extracted 15,756 echinococcus tiles from 28 patients using 59 whole slide images (WSI); 11,602 tiles of normal liver parenchyma from 18 patients using 33 WSI served as a control group. Different pretrained model architectures were used with a 60–20–20% random splitting. We visualized the predictions using probability-thresholded heat maps of WSI. The area-under-the-curve (AUC) value and other performance metrics were calculated. The GradCAM method was used to calculate and visualize important spatial features. Results The models achieved a high validation and test set accuracy. The calculated AUC values were 1.0 in all models. Pericystic fibrosis and necrotic areas, as well as germinative and laminated layers of the metacestodes played an important role in decision tasks according to the superimposed GradCAM heatmaps. Conclusion Deep learning models achieved a high predictive performance in classifying E. multilocularis liver lesions. A possible next step could be to validate the model using other datasets and test it against other pathologic entities as well, such as, for example, Echinococcus granulosus infection. Graphical Abstract
- Published
- 2023
- Full Text
- View/download PDF