1. ZebraPose: Zebra Detection and Pose Estimation using only Synthetic Data
- Author
-
Bonetto, Elia and Ahmad, Aamir
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Robotics - Abstract
Synthetic data is increasingly being used to address the lack of labeled images in uncommon domains for deep learning tasks. A prominent example is 2D pose estimation of animals, particularly wild species like zebras, for which collecting real-world data is complex and impractical. However, many approaches still require real images, consistency and style constraints, sophisticated animal models, and/or powerful pre-trained networks to bridge the syn-to-real gap. Moreover, they often assume that the animal can be reliably detected in images or videos, a hypothesis that often does not hold, e.g. in wildlife scenarios or aerial images. To solve this, we use synthetic data generated with a 3D photorealistic simulator to obtain the first synthetic dataset that can be used for both detection and 2D pose estimation of zebras without applying any of the aforementioned bridging strategies. Unlike previous works, we extensively train and benchmark our detection and 2D pose estimation models on multiple real-world and synthetic datasets using both pre-trained and non-pre-trained backbones. These experiments show how the models trained from scratch and only with synthetic data can consistently generalize to real-world images of zebras in both tasks. Moreover, we show it is possible to easily generalize those same models to 2D pose estimation of horses with a minimal amount of real-world images to account for the domain transfer. Code, results, trained models; and the synthetic, training, and validation data, including 104K manually labeled frames, are provided as open-source at https://zebrapose.is.tue.mpg.de/, Comment: 8 pages, 5 tables, 7 figures
- Published
- 2024