8 results on '"Aguiar TFM"'
Search Results
2. First Transcriptome Analysis of Hepatoblastoma in Brazil: Unraveling the Pivotal Role of Noncoding RNAs and Metabolic Pathways.
- Author
-
Aguiar TFM, Rivas MP, de Andrade Silva EM, Pires SF, Dangoni GD, Macedo TC, Defelicibus A, Barros BDF, Novak E, Cristofani LM, Odone V, Cypriano M, de Toledo SRC, da Cunha IW, da Costa CML, Carraro DM, Tojal I, de Oliveira Mendes TA, and Krepischi ACV
- Abstract
Hepatoblastoma stands as the most prevalent liver cancer in the pediatric population. Characterized by a low mutational burden, chromosomal and epigenetic alterations are key drivers of its tumorigenesis. Transcriptome analysis is a powerful tool for unraveling the molecular intricacies of hepatoblastoma, shedding light on the effects of genetic and epigenetic changes on gene expression. In this study conducted in Brazilian patients, an in-depth whole transcriptome analysis was performed on 14 primary hepatoblastomas, compared to control liver tissues. The analysis unveiled 1,492 differentially expressed genes (1,031 upregulated and 461 downregulated), including 920 protein-coding genes (62%). Upregulated biological processes were linked to cell differentiation, signaling, morphogenesis, and development, involving known hepatoblastoma-associated genes (DLK1, MEG3, HDAC2, TET1, HMGA2, DKK1, DKK4), alongside with novel findings (GYNG4, CDH3, and TNFRSF19). Downregulated processes predominantly centered around oxidation and metabolism, affecting amines, nicotinamides, and lipids, featuring novel discoveries like the repression of SYT7, TTC36, THRSP, CCND1, GCK and CAMK2B. Two genes, which displayed a concordant pattern of DNA methylation alteration in their promoter regions and dysregulation in the transcriptome, were further validated by RT-qPCR: the upregulated TNFRSF19, a key gene in the embryonic development, and the repressed THRSP, connected to lipid metabolism. Furthermore, based on protein-protein interaction analysis, we identified genes holding central positions in the network, such as HDAC2, CCND1, GCK, and CAMK2B, among others, that emerged as prime candidates warranting functional validation in future studies. Notably, a significant dysregulation of non-coding RNAs (ncRNAs), predominantly upregulated transcripts, was observed, with 42% of the top 50 highly expressed genes being ncRNAs. An integrative miRNA-mRNA analysis revealed crucial biological processes associated with metabolism, oxidation reactions of lipids and carbohydrates, and methylation-dependent chromatin silencing. In particular, four upregulated miRNAs (miR-186, miR-214, miR-377, and miR-494) played a pivotal role in the network, potentially targeting multiple protein-coding transcripts, including CCND1 and CAMK2B. In summary, our transcriptome analysis highlighted disrupted embryonic development as well as metabolic pathways, particularly those involving lipids, emphasizing the emerging role of ncRNAs as epigenetic regulators in hepatoblastomas. These findings provide insights into the complexity of the hepatoblastoma transcriptome and identify potential targets for future therapeutic interventions., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
3. Broad responses to chemical adducts shape the natural antibody repertoire in early infancy.
- Author
-
Mashiko S, Shihab RR, See SB, Schahadat LGZ, Aguiar TFM, Roy P, Porcheray F, and Zorn E
- Subjects
- Infant, Newborn, Infant, Humans, Immunoglobulin M, Immunoglobulin G, Antigens, Antibodies, Monoclonal
- Abstract
Natural antibodies are an integral part of innate humoral immunity yet their development and polyreactive nature are still enigmatic. Here, we show that characteristic monoclonal natural antibodies recognize common chemical moieties or adducts, supporting the view that polyreactive antibodies may often correspond to anti-adduct antibodies. We next examined the development of immunoglobulin M (IgM) and IgG to 81 ubiquitous adducts from birth to old age. Newborn IgM only reacted to a limited number of consensus determinants. This highly restricted neonatal repertoire abruptly diversified around 6 months of age through the development of antibodies to environmental antigens and age-driven epigenetic modifications. In contrast, the IgG repertoire was diverse across the entire life span. Our studies reveal an unrecognized component of humoral immunity directed to common adducts. These findings set the ground for further investigations into the role of anti-adduct B cell responses in homeostatic functions and pathological conditions.
- Published
- 2023
- Full Text
- View/download PDF
4. Copy Number Alterations in Hepatoblastoma: Literature Review and a Brazilian Cohort Analysis Highlight New Biological Pathways.
- Author
-
Barros JS, Aguiar TFM, Costa SS, Rivas MP, Cypriano M, Toledo SRC, Novak EM, Odone V, Cristofani LM, Carraro DM, Werneck da Cunha I, Costa CML, Vianna-Morgante AM, Rosenberg C, and Krepischi ACV
- Abstract
Hepatoblastoma (HB) is a rare embryonal tumor, although it is the most common pediatric liver cancer. The aim of this study was to provide an accurate cytogenomic profile of this type of cancer, for which information in cancer databases is lacking. We performed an extensive literature review of cytogenetic studies on HBs disclosing that the most frequent copy number alterations (CNAs) are gains of 1q, 2/2q, 8/8q, and 20; and losses at 1p and 4q. Furthermore, the CNA profile of a Brazilian cohort of 26 HBs was obtained by array-CGH; the most recurrent CNAs were the same as shown in the literature review. Importantly, HBs from female patients, high-risk stratification tumors, tumors who developed in older patients (> 3 years at diagnosis) or from patients with metastasis and/or deceased carried a higher diversity of chromosomal alterations, specifically chromosomal losses at 1p, 4, 11q and 18q. In addition, we distinguished three major CNA profiles: no detectable CNA, few CNAs and tumors with complex genomes. Tumors with simpler genomes exhibited a significant association with the epithelial fetal subtype of HBs; in contrast, the complex genome group included three cases with epithelial embryonal histology, as well as the only HB with HCC features. A significant association of complex HB genomes was observed with older patients who developed high-risk tumors, metastasis, and deceased. Moreover, two patients with HBs exhibiting complex genomes were born with congenital anomalies. Together, these findings suggest that a high load of CNAs, mainly chromosomal losses, particularly losses at 1p and 18, increases the tendency to HB aggressiveness. Additionally, we identified six hot-spot chromosome regions most frequently affected in the entire group: 1q31.3q42.3, 2q23.3q37.3, and 20p13p11.1 gains, besides a 5,3 Mb amplification at 2q24.2q24.3, and losses at 1p36.33p35.1, 4p14 and 4q21.22q25. An in-silico analysis using the genes mapped to these six regions revealed several enriched biological pathways such as ERK Signaling, MicroRNAs in Cancer, and the PI3K-Akt Signaling, in addition to the WNT Signaling pathway; further investigation is required to evaluate if disturbances of these pathways can contribute to HB tumorigenesis. The analyzed gene set was found to be associated with neoplasms, abnormalities of metabolism/homeostasis and liver morphology, as well as abnormal embryonic development and cytokine secretion. In conclusion, we have provided a comprehensive characterization of the spectrum of chromosomal alterations reported in HBs and identified specific genomic regions recurrently altered in a Brazilian HB group, pointing to new biological pathways, and relevant clinical associations., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Barros, Aguiar, Costa, Rivas, Cypriano, Toledo, Novak, Odone, Cristofani, Carraro, werneck da Cunha, Costa, Vianna-Morgante, Rosenberg and Krepischi.)
- Published
- 2021
- Full Text
- View/download PDF
5. Detection of mosaicism for segmental and whole chromosome imbalances by targeted sequencing.
- Author
-
Villela D, de Barros JS, da Costa SS, Aguiar TFM, Campagnari F, Vianna-Morgante AM, Krepischi ACV, and Rosenberg C
- Subjects
- High-Throughput Nucleotide Sequencing methods, Humans, Neoplasms genetics, Polymorphism, Single Nucleotide, DNA Copy Number Variations, Genetic Testing methods, Mosaicism, Sequence Analysis, DNA methods
- Abstract
Mosaic segmental and whole chromosome copy number alterations are postzygotic variations known to be associated with several disorders. We have previously presented an efficient targeted sequencing approach to simultaneously detect point mutations and copy number variations (CNVs). In this study, we evaluated the efficiency of this approach to detect mosaic CNVs, using seven postnatal and 19 tumor samples, previously characterized by chromosomal microarray analyses (CMA). These samples harbored a total of 28 genomic imbalances ranging in size from 0.68 to 171 Mb, and present in 10-80% of the cells. All CNV regions covered by the platform were correctly identified in postnatal samples, and only seven out of 19 CNVs from tumor samples were not identified either because of a lack of target probes in the affected genomic regions or an absence of minimum reads for an alteration call. These results demonstrate that, in a research setting, this is a robust approach for detecting mosaicism in cases of segmental and whole chromosome alterations. Although the current sequencing platform presented a resolution similar to genomic microarrays, it is still necessary to further validate this approach in a clinical setting in order to replace CMA and sequencing analyses by a single test., (© 2020 John Wiley & Sons Ltd/University College London.)
- Published
- 2021
- Full Text
- View/download PDF
6. Hepatoblastomas exhibit marked NNMT downregulation driven by promoter DNA hypermethylation.
- Author
-
Rivas MP, Aguiar TFM, Maschietto M, Lemes RB, Caires-Júnior LC, Goulart E, Telles-Silva KA, Novak E, Cristofani LM, Odone V, Cypriano M, de Toledo SRC, Carraro DM, Escobar MQ, Lee H, Johnston M, da Costa CML, da Cunha IW, Tasic L, Pearson PL, Rosenberg C, Timchenko N, and Krepischi ACV
- Subjects
- Adolescent, Cell Line, Tumor, Child, Child, Preschool, Female, Gene Expression Regulation, Neoplastic, Hep G2 Cells, Hepatoblastoma metabolism, Hepatoblastoma pathology, Humans, Infant, Infant, Newborn, Kaplan-Meier Estimate, Liver metabolism, Liver pathology, Liver Neoplasms metabolism, Liver Neoplasms pathology, Male, Metabolomics methods, Nicotinamide N-Methyltransferase metabolism, DNA Methylation, Down-Regulation, Hepatoblastoma genetics, Liver Neoplasms genetics, Nicotinamide N-Methyltransferase genetics, Promoter Regions, Genetic genetics
- Abstract
Hepatoblastomas exhibit the lowest mutational burden among pediatric tumors. We previously showed that epigenetic disruption is crucial for hepatoblastoma carcinogenesis. Our data revealed hypermethylation of nicotinamide N-methyltransferase, a highly expressed gene in adipocytes and hepatocytes. The expression pattern and the role of nicotinamide N-methyltransferase in pediatric liver tumors have not yet been explored, and this study aimed to evaluate the effect of nicotinamide N-methyltransferase hypermethylation in hepatoblastomas. We evaluated 45 hepatoblastomas and 26 non-tumoral liver samples. We examined in hepatoblastomas if the observed nicotinamide N-methyltransferase promoter hypermethylation could lead to dysregulation of expression by measuring mRNA and protein levels by real-time quantitative polymerase chain reaction, immunohistochemistry, and Western blot assays. The potential impact of nicotinamide N-methyltransferase changes was evaluated on the metabolic profile by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy. Significant nicotinamide N-methyltransferase downregulation was revealed in hepatoblastomas, with two orders of magnitude lower nicotinamide N-methyltransferase expression in tumor samples and hepatoblastoma cell lines than in hepatocellular carcinoma cell lines. A specific TSS1500 CpG site (cg02094283) of nicotinamide N-methyltransferase was hypermethylated in tumors, with an inverse correlation between its methylation level and nicotinamide N-methyltransferase expression. A marked global reduction of the nicotinamide N-methyltransferase protein was validated in tumors, with strong correlation between gene and protein expression. Of note, higher nicotinamide N-methyltransferase expression was statistically associated with late hepatoblastoma diagnosis, a known clinical variable of worse prognosis. In addition, untargeted metabolomics analysis detected aberrant lipid metabolism in hepatoblastomas. Data presented here showed the first evidence that nicotinamide N-methyltransferase reduction occurs in hepatoblastomas, providing further support that the nicotinamide N-methyltransferase downregulation is a wide phenomenon in liver cancer. Furthermore, this study unraveled the role of DNA methylation in the regulation of nicotinamide N-methyltransferase expression in hepatoblastomas, in addition to evaluate the potential effect of nicotinamide N-methyltransferase reduction in the metabolism of these tumors. These preliminary findings also suggested that nicotinamide N-methyltransferase level may be a potential prognostic biomarker for hepatoblastoma.
- Published
- 2020
- Full Text
- View/download PDF
7. Insights Into the Somatic Mutation Burden of Hepatoblastomas From Brazilian Patients.
- Author
-
Aguiar TFM, Rivas MP, Costa S, Maschietto M, Rodrigues T, Sobral de Barros J, Barbosa AC, Valieris R, Fernandes GR, Bertola DR, Cypriano M, Caminada de Toledo SR, Major A, Tojal I, Apezzato MLP, Carraro DM, Rosenberg C, Lima da Costa CM, Cunha IW, Sarabia SF, Terrada DL, and Krepischi ACV
- Abstract
Hepatoblastoma is a very rare embryonal liver cancer supposed to arise from the impairment of hepatocyte differentiation during embryogenesis. In this study, we investigated by exome sequencing the burden of somatic mutations in a cohort of 10 hepatoblastomas, including a congenital case. Our data disclosed a low mutational background and pointed out to a novel set of candidate genes for hepatoblastoma biology, which were shown to impact gene expression levels. Only three recurrently mutated genes were detected: CTNNB1 and two novel candidates, CX3CL1 and CEP164 . A relevant finding was the identification of a recurrent mutation (A235G) in two hepatoblastomas at the CX3CL1 gene; evaluation of RNA and protein expression revealed upregulation of CX3CL1 in tumors. The analysis was replicated in two independents cohorts, substantiating that an activation of the CX3CL1/CX3CR1 pathway occurs in hepatoblastomas. In inflammatory regions of hepatoblastomas, CX3CL1/CX3CR1 were not detected in the infiltrated lymphocytes, in which they should be expressed in normal conditions, whereas necrotic regions exhibited negative labeling in tumor cells, but strongly positive infiltrated lymphocytes. Altogether, these data suggested that CX3CL1/CX3CR1 upregulation may be a common feature of hepatoblastomas, potentially related to chemotherapy response and progression. In addition, three mutational signatures were identified in hepatoblastomas, two of them with predominance of either the COSMIC signatures 1 and 6, found in all cancer types, or the COSMIC signature 29, mostly related to tobacco chewing habit; a third novel mutational signature presented an unspecific pattern with an increase of C>A mutations. Overall, we present here novel candidate genes for hepatoblastoma, with evidence that CX3CL1/CX3CR1 chemokine signaling pathway is likely involved with progression, besides reporting specific mutational signatures., (Copyright © 2020 Aguiar, Rivas, Costa, Maschietto, Rodrigues, Sobral de Barros, Barbosa, Valieris, Fernandes, Bertola, Cypriano, Caminada de Toledo, Major, Tojal, Apezzato, Carraro, Rosenberg, Lima da Costa, Cunha, Sarabia, Terrada and Krepischi.)
- Published
- 2020
- Full Text
- View/download PDF
8. TET Upregulation Leads to 5-Hydroxymethylation Enrichment in Hepatoblastoma.
- Author
-
Rivas MP, Aguiar TFM, Fernandes GR, Caires-Júnior LC, Goulart E, Telles-Silva KA, Cypriano M, de Toledo SRC, Rosenberg C, Carraro DM, da Costa CML, da Cunha IW, and Krepischi ACV
- Abstract
Hepatoblastoma is an embryonal liver tumor carrying few genetic alterations. We previously disclosed in hepatoblastomas a genome-wide methylation dysfunction, characterized by hypermethylation at specific CpG islands, in addition to a low-level hypomethylation pattern in non-repetitive intergenic sequences, in comparison to non-tumoral liver tissues, shedding light into a crucial role for epigenetic dysregulation in this type of cancer. To explore the underlying mechanisms possibly related to aberrant epigenetic modifications, we evaluated the expression profile of a set of genes engaged in the epigenetic machinery related to DNA methylation ( DNMT1 , DNMT3A , DNMT3B , DNMT3L , UHRF1 , TET1 , TET2 , and TET3 ), as well as the 5-hydroxymethylcytosine (5hmC) global level. We observed in hepatoblastomas a general disrupted expression of these genes from the epigenetic machinery, mainly UHRF1 , TET1 , and TET2 upregulation, in association with an enrichment of 5hmC content. Our findings support a model of active demethylation by TETs in hepatoblastoma, probably during early stages of liver development, which in combination with UHRF1 overexpression would lead to DNA hypomethylation and an increase in overall 5hmC content. Furthermore, our data suggest that decreased 5hmC content might be associated with poor survival rate, highlighting a pivotal role of epigenetics in hepatoblastoma development and progression.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.