20 results on '"Agnoli, Andrea"'
Search Results
2. Development of a level set methodology to simulate grain growth in the presence of real secondary phase particles and stored energy – Application to a nickel-base superalloy
- Author
-
Agnoli, Andrea, Bozzolo, Nathalie, Logé, Roland, Franchet, Jean-Michel, Laigo, Johanne, and Bernacki, Marc
- Published
- 2014
- Full Text
- View/download PDF
3. Strain induced excessive grain growth in nickel base superalloys
- Author
-
Bozzolo, Nathalie, Charpagne, Marie-Agathe, Franchet, Jean-Michel, Agnoli, Andrea, Bernacki, Marc, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Chaire OPALE
- Subjects
ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2018
4. Full field modeling in a level set framework of Zener pinning phenomenon - discussion of classical limit mean grain size equation
- Author
-
Scholtes, Benjamin, Ilin, Dmitrii Nikolaevich, Settefrati, Amico, Bozzolo, Nathalie, Agnoli, Andrea, Bernacki, Marc, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Chaire OPALE, Chaire DIGIMU, Transvalor, Transvalor S.A., SNECMA Gennevilliers [Colombes], Safran Group, and The Minerals, Metals & Materials Society
- Subjects
[SPI]Engineering Sciences [physics] ,ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; Pinning of grain boundaries by second phase particles is widely used to control the grain size during forming process of superalloys.
- Published
- 2016
- Full Text
- View/download PDF
5. The annealing twin density evolution during grain growth in inconel 718
- Author
-
Jin, Yuan, Bernacki, Marc, Agnoli, Andrea, Lin, Brian, rohrer, Gregory S., Rollett, A. D., Bozzolo, Nathalie, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Department of Material Science and Engineering, and Carnegie Mellon University [Pittsburgh] (CMU)
- Subjects
ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2014
6. Full field modelling of recrystallization in superalloys thanks to level-set method
- Author
-
Bernacki, Marc, Bozzolo, Nathalie, Logé, Roland E., Jin, Yuan, Agnoli, Andrea, Cruz Fabiano, Ana Laura, Rollett, A. D., rohrer, Gregory S., Franchet, Jean-Michel, Laigo, Johanne, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Department of Material Science and Engineering, Carnegie Mellon University [Pittsburgh] (CMU), SNECMA Gennevilliers [Colombes], and Safran Group
- Subjects
ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2014
7. Origine de l’éclatement de grain sur des pièces forgées en Inconel 718
- Author
-
Agnoli, Andrea, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Mines de Paris, Nathalie Bozzolo, and Marc Bernacki
- Subjects
Abnormal grain growth ,Inconel 718 ,Energie de déformation ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Simulation en champs complets ,Zener pinning ,Croissance anormale des grains ,Ancrage de Zener ,Full-Field simulation ,Strain energy - Abstract
Inconel 718 is a nickel base superalloy commonly used to manufacture the rotating disks of turbojet engines. Such disks are generally produced by hot forging, which involves a sequence of different deformation and annealing steps. The presence of second phase particles (delta phase in Inconel 718) is commonly exploited to limit grain growth during annealing via the Zener pinning phenomenon. Nonetheless, microstructure heterogeneity (with regards to second phase particles, hardening, texture and chemical composition) can lead to inhomogeneous grain growth during annealing. The objectives of this PhD work were to understand, model and simulate numerically the phenomenon of inhomogeneous grain growth that can occur in Inconel 718 turbine disks during the annealing steps of hot forging sequences. The physical mechanisms which may explain the occurrence of the phenomenon are investigated experimentally by performing SEM and EBSD analyses of Inconel 718 industrial pieces. The focus is placed on the influence of second phase particles and strain energy (estimated from intragranular misorientations) on the occurrence of the phenomenon. From those observations, it is inferred that the phenomenon occurs when the grain boundary driving forces overcome the Zener pinning forces; this is achieved when stored energy is present and heterogeneously distributed. Moreover, hot torsion tests are carried out to reproduce the phenomenon in laboratory, to evaluate its sensibility to thermomechanical parameters and to test the previously postulated mechanism. The validity of this mechanism is finally demonstrated by modelling numerically the phenomenon in 2D. The full field numerical model is based on a level set description of the grain boundaries in a finite element context. Microstructure evolution is simulated explicitly taking into account Zener pinning, capillarity and stored energy driven grain growth in a single framework. The effect of strain stored energy distributions (estimated from experimental data) in pinned microstructures is investigated focusing on the conditions leading to inhomogeneous grain growth.; L'Inconel 718 est un superalliage base nickel très utilisé pour produire les disques de turboréacteurs. Typiquement, une gamme de forgeage à chaud se compose de plusieurs étapes de déformation et de recuit. La présence des particules de seconde phase (particules de phase delta dans l'Inconel 718) permet en principe de limiter la croissance de grains pendant les étapes de recuit grâce au phénomène d'ancrage de Zener. Néanmoins, l'hétérogénéité microstructurale (distribution des particules, écrouissage, composition chimique) peut favoriser une croissance anormale des grains pendant le recuit. Ce phénomène est connu industriellement sous la terminologie d'"éclatement de grains". Les objectifs de la thèse étaient d'identifier les mécanismes responsables de l'éclatement des grains qui peut survenir durant les étapes de recuit sur les pièces forgées en Inconel 718, de les modéliser, et de simuler numériquement le phénomène. Les mécanismes physiques à l'origine du phénomène sont d'abord étudiés expérimentalement grâce à la caractérisation (par MEB et EBSD) des pièces forgées. L'influence des particules de seconde phase et de l'énergie stockée (estimée par des mesures de désorientations intragranulaires) est notamment étudiée. A partir des observations réalisées, une explication est proposée : le phénomène apparaît lorsque les forces motrices pour la migration des joints de grains dépassent la force de freinage de Zener ; ceci peut se produire lorsque la microstructure contient de l'énergie stockée, distribuée de manière hétérogène. Des essais de torsion à chaud sont mis en place pour reproduire, en laboratoire, le même phénomène, étudier la sensibilité aux paramètres thermomécaniques, et tester les hypothèses émises concernant les mécanismes. Les mécanismes ainsi identifiés comme responsables de l'éclatement de grains sont enfin simulés au moyen d'un modèle numérique en 2D. Le modèle numérique en champ complet est basé sur la méthode des éléments finis, et utilise le formalisme level-set pour décrire les joints de grains. La simulation de l'évolution microstructurale prend en compte à la fois les forces motrices des joints de grains liées à la capillarité et à l'énergie stockée, et l'interaction des joints de grains avec les particules de seconde phase. Ainsi, l'effet de la distribution de l'énergie stockée (estimée à partir de données expérimentales) a pu être étudié numériquement dans des microstructures avec particules.
- Published
- 2013
8. Origin of inhomogeneous grain growth in Inconel 718 forgings
- Author
-
Agnoli, Andrea, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Mines de Paris, Nathalie Bozzolo, and Marc Bernacki
- Subjects
Abnormal grain growth ,Inconel 718 ,Energie de déformation ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Simulation en champs complets ,Zener pinning ,Croissance anormale des grains ,Ancrage de Zener ,Full-Field simulation ,Strain energy - Abstract
Inconel 718 is a nickel base superalloy commonly used to manufacture the rotating disks of turbojet engines. Such disks are generally produced by hot forging, which involves a sequence of different deformation and annealing steps. The presence of second phase particles (delta phase in Inconel 718) is commonly exploited to limit grain growth during annealing via the Zener pinning phenomenon. Nonetheless, microstructure heterogeneity (with regards to second phase particles, hardening, texture and chemical composition) can lead to inhomogeneous grain growth during annealing. The objectives of this PhD work were to understand, model and simulate numerically the phenomenon of inhomogeneous grain growth that can occur in Inconel 718 turbine disks during the annealing steps of hot forging sequences. The physical mechanisms which may explain the occurrence of the phenomenon are investigated experimentally by performing SEM and EBSD analyses of Inconel 718 industrial pieces. The focus is placed on the influence of second phase particles and strain energy (estimated from intragranular misorientations) on the occurrence of the phenomenon. From those observations, it is inferred that the phenomenon occurs when the grain boundary driving forces overcome the Zener pinning forces; this is achieved when stored energy is present and heterogeneously distributed. Moreover, hot torsion tests are carried out to reproduce the phenomenon in laboratory, to evaluate its sensibility to thermomechanical parameters and to test the previously postulated mechanism. The validity of this mechanism is finally demonstrated by modelling numerically the phenomenon in 2D. The full field numerical model is based on a level set description of the grain boundaries in a finite element context. Microstructure evolution is simulated explicitly taking into account Zener pinning, capillarity and stored energy driven grain growth in a single framework. The effect of strain stored energy distributions (estimated from experimental data) in pinned microstructures is investigated focusing on the conditions leading to inhomogeneous grain growth.; L'Inconel 718 est un superalliage base nickel très utilisé pour produire les disques de turboréacteurs. Typiquement, une gamme de forgeage à chaud se compose de plusieurs étapes de déformation et de recuit. La présence des particules de seconde phase (particules de phase delta dans l'Inconel 718) permet en principe de limiter la croissance de grains pendant les étapes de recuit grâce au phénomène d'ancrage de Zener. Néanmoins, l'hétérogénéité microstructurale (distribution des particules, écrouissage, composition chimique) peut favoriser une croissance anormale des grains pendant le recuit. Ce phénomène est connu industriellement sous la terminologie d'"éclatement de grains". Les objectifs de la thèse étaient d'identifier les mécanismes responsables de l'éclatement des grains qui peut survenir durant les étapes de recuit sur les pièces forgées en Inconel 718, de les modéliser, et de simuler numériquement le phénomène. Les mécanismes physiques à l'origine du phénomène sont d'abord étudiés expérimentalement grâce à la caractérisation (par MEB et EBSD) des pièces forgées. L'influence des particules de seconde phase et de l'énergie stockée (estimée par des mesures de désorientations intragranulaires) est notamment étudiée. A partir des observations réalisées, une explication est proposée : le phénomène apparaît lorsque les forces motrices pour la migration des joints de grains dépassent la force de freinage de Zener ; ceci peut se produire lorsque la microstructure contient de l'énergie stockée, distribuée de manière hétérogène. Des essais de torsion à chaud sont mis en place pour reproduire, en laboratoire, le même phénomène, étudier la sensibilité aux paramètres thermomécaniques, et tester les hypothèses émises concernant les mécanismes. Les mécanismes ainsi identifiés comme responsables de l'éclatement de grains sont enfin simulés au moyen d'un modèle numérique en 2D. Le modèle numérique en champ complet est basé sur la méthode des éléments finis, et utilise le formalisme level-set pour décrire les joints de grains. La simulation de l'évolution microstructurale prend en compte à la fois les forces motrices des joints de grains liées à la capillarité et à l'énergie stockée, et l'interaction des joints de grains avec les particules de seconde phase. Ainsi, l'effet de la distribution de l'énergie stockée (estimée à partir de données expérimentales) a pu être étudié numériquement dans des microstructures avec particules.
- Published
- 2013
9. A Zener pinning model based on a level set method
- Author
-
Agnoli, Andrea, Bozzolo, Nathalie, Logé, Roland E., Bernacki, Marc, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2013
10. Modelling Zener pinning with a full field method based on a level set framework
- Author
-
Bernacki, Marc, Agnoli, Andrea, Bozzolo, Nathalie, Logé, Roland E., Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2012
11. Understanding and modeling of gain boundary pinning in Inconel718
- Author
-
Agnoli, Andrea, Bernacki, Marc, Logé, Roland E., Franchet, Jean-Michel, Laigo, Johanne, Bozzolo, Nathalie, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), SNECMA Gennevilliers [Colombes], Safran Group, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman, TMS (the Mineral, and Metals & Materials Society)
- Subjects
Inconel 718 ,Zener pinning ,Numerical simulation ,Grain growth ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; The microstructure stability during d sub-solvus annealing was investigated in Inconel 718 alloy. A reference dynamically recrystallized microstructure was produced through thermomechanical processing (torsion). The reference microstructure evolution during annealing was analyzed by EBSD (grain size, intragranular misorientation) and SEM ( phase particles). Results con rm that, in the absence of stored energy, the grain structure is controlled by the phase particles, as predicted by the Zener equation. If the reference microstructure is strained (e < 0:1) before annealing, then stored energy gradients between grains will induce selective grain growth leading to coarsening. The phenomenon is controlled by the balance of three forces (acting on boundaries migration) having the same order of magnitude: capillarity, stored-energy and pinning forces. All these forces could be modeled in a single framework by the level set method. The rst numerical results demonstrate the capability of the method to simulate 2D Zener pinning. The aim of this paper is to investigate the influence of the distribution of d phase particles and deformation stored energyon the microstructure stability during d sub-solvus annealing.
- Published
- 2012
12. Evolution of the Annealing Twin Density during δ-Supersolvus Grain Growth in the Nickel-Based Superalloy Inconel™ 718
- Author
-
Jin, Yuan, primary, Bernacki, Marc, additional, Agnoli, Andrea, additional, Lin, Brian, additional, Rohrer, Gregory, additional, Rollett, Anthony, additional, and Bozzolo, Nathalie, additional
- Published
- 2015
- Full Text
- View/download PDF
13. Selective Growth of Low Stored Energy Grains During δ Sub-solvus Annealing in the Inconel 718 Nickel-Based Superalloy
- Author
-
Agnoli, Andrea, primary, Bernacki, Marc, additional, Logé, Roland, additional, Franchet, Jean-Michel, additional, Laigo, Johanne, additional, and Bozzolo, Nathalie, additional
- Published
- 2015
- Full Text
- View/download PDF
14. TiO2 Nanotubes: Interdependence of Substrate Grain Orientation and Growth Rate
- Author
-
Leonardi, Silvia, primary, Russo, Valeria, additional, Li Bassi, Andrea, additional, Di Fonzo, Fabio, additional, Murray, Thomas M., additional, Efstathiadis, Harry, additional, Agnoli, Andrea, additional, and Kunze-Liebhäuser, Julia, additional
- Published
- 2015
- Full Text
- View/download PDF
15. Strain Induced Abnormal Grain Growth in Nickel Base Superalloys
- Author
-
Bozzolo, Nathalie, primary, Agnoli, Andrea, additional, Souaï, Nadia, additional, Bernacki, Marc, additional, and Logé, Roland E., additional
- Published
- 2013
- Full Text
- View/download PDF
16. Understanding and Modeling of Grain Boundary Pinning in Inconel 718
- Author
-
Agnoli, Andrea, primary, Bernacki, Marc, additional, Logé, Roland, additional, Franchet, Jean‐Michel, additional, Laigo, Johanne, additional, and Bozzolo, Nathalie, additional
- Published
- 2012
- Full Text
- View/download PDF
17. Sonoelectrochemical Synthesis of FeCo Nanoparticles: Study of the Effects of Baths Composition on Process Efficiency and Particles Features
- Author
-
Zin, Valentina, primary, Zanella, Alessandra, additional, Agnoli, Andrea, additional, Brunelli, Katya, additional, and Dabala, Manuele, additional
- Published
- 2009
- Full Text
- View/download PDF
18. Evolution of the Annealing Twin Density during δ-Supersolvus Grain Growth in the Nickel-Based Superalloy Inconel™ 718.
- Author
-
Yuan Jin, Bernacki, Marc, Agnoli, Andrea, Brian Lin, Rohrer, Gregory S., Rollett, Anthony D., and Bozzolo, Nathalie
- Subjects
ANNEALING of metals ,HEAT resistant alloys ,INCONEL ,NICKEL alloys ,GRAIN size ,THERMAL properties - Abstract
Grain growth experiments were performed on Inconel™ 718 to investigate the possible correlation of the annealing twin density with grain size and with annealing temperature. Those experiments were conducted at different temperatures in the δ supersolvus domain and under such conditions that only capillarity forces were involved in the grain boundary migration process. In the investigated range, there is a strong inverse correlation of the twin density with the average grain size. On the other hand, the twin density at a given average grain size is not sensitive to annealing temperature. Consistent with previous results for pure nickel, the twin density evolution in Inconel™ 718 is likely to be mainly controlled by the propagation of the pre-existing twins of the growing grains; i.e., the largest ones of the initial microstructure. Almost no new twin boundaries are created during the grain growth process itself. Therefore, the twin density at a given average grain size is mainly dependent on the twin density in the largest grains of the initial microstructure and independent of the temperature at which grains grow. Based on the observations, a mean field model is proposed to predict annealing twin density as a function of grain size during grain growth. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
19. TiO2Nanotubes: Interdependence of Substrate Grain Orientation and Growth Rate
- Author
-
Leonardi, Silvia, Russo, Valeria, Li Bassi, Andrea, Di Fonzo, Fabio, Murray, Thomas M., Efstathiadis, Harry, Agnoli, Andrea, and Kunze-Liebhäuser, Julia
- Abstract
Highly ordered arrays of TiO2nanotubes can be produced by self-organized anodic growth. It is desirable to identify key parameters playing a role in the maximization of the surface area, growth rate, and nanotube lengths. In this work, the role of the crystallographic orientation of the underlying Ti substrate on the growth rate of anodic self-organized TiO2nanotubes in viscous organic electrolytes in the presence of small amounts of fluorides is studied. A systematic analysis of cross sections of the nanotubular oxide films on differently oriented substrate grains was conducted by a combination of electron backscatter diffraction and scanning electron microscopy. The characterization allows for a correlation between TiO2nanotube lengths and diameters and crystallographic parameters of the underlying Ti metal substrate, such as planar surface densities. It is found that the growth rate of TiO2nanotubes gradually increases with the decreasing planar atomic density of the titanium substrate. Anodic TiO2nanotubes with the highest aspect ratio form on Ti(−151) [which is close to Ti(010)], whereas nanotube formation is completely inhibited on Ti(001). In the thin compact oxide on Ti(001), the electron donor concentration and electronic conductivity are higher, which leads to a competition between oxide growth and other electrochemical oxidation reactions, such as the oxygen evolution reaction, upon anodic polarization. At grain boundaries between oxide films on Ti(hk0), where nanotubes grow, and Ti(001), where thin compact oxide films are formed, the length of nanotubes decreases most likely because of lateral electron migration from TiO2on Ti(001) to TiO2on Ti(hk0).
- Published
- 2015
- Full Text
- View/download PDF
20. UNDERSTANDING AND MODELING OF GRAIN BOUNDARY PINNING IN INCONEL 718
- Author
-
Agnoli, Andrea, marc bernacki, Loge, Roland, Franchet, Jean-Michel, Laigo, Johanne, Bozzolo, Nathalie, Huron, Es, Reed, Rc, Hardy, Mc, Mills, Mj, Montero, Re, Portella, Pd, and Telesman, J.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.