Yonghua Li-Beisson, Arthur Gosset, Gilles Peltier, Pierre Richaud, Adrien Burlacot, Bioénergie et Microalgues (EBM), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), This work was supported by the ERA-SynBio project Sun2Chem., The authors acknowledge the European Union Regional Developing Fund, the Region Provence Alpes Côte d’Azur, the French Ministry of Research, and the CEA for funding the HelioBiotec platform., ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), ANR-18-CE05-0029,OtolHyd,Hydrogénases cyanobactériennes tolérantes à l'Oxygène: caractérisation fonctionnelle et ingénierie(2018), Environnement, Bioénergie, Microalgues et Plantes (EBMP), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), ANR-18-CE05-0029,OTOLHYD,CYANOBACTERIAL OXYGEN-TOLERANT HYDROGENASES: FUNCTIONAL CHARACTERIZATION AND ENGINEERING(2018), and ANR-11-IDEX-0001-02/11-IDEX-0001,AMIDEX,AMIDEX(2011)
Significance Nitrous oxide (N2O), the third most important greenhouse gas in the atmosphere, is produced in great quantities by microalgae, but molecular mechanisms remain elusive. Here we show that the green microalga Chlamydomonas reinhardtii produces N2O in the light by a reduction of NO driven by photosynthesis and catalyzed by flavodiiron proteins, the dark N2O production being catalyzed by a cytochrome p450. Both mechanisms of N2O production are present in chlorophytes, but absent from diatoms. Our study provides an unprecedented mechanistic understanding of N2O production by microalgae, allowing a better assessment of N2O-producing hot spots in aquatic environments., Nitrous oxide (N2O), a potent greenhouse gas in the atmosphere, is produced mostly from aquatic ecosystems, to which algae substantially contribute. However, mechanisms of N2O production by photosynthetic organisms are poorly described. Here we show that the green microalga Chlamydomonas reinhardtii reduces NO into N2O using the photosynthetic electron transport. Through the study of C. reinhardtii mutants deficient in flavodiiron proteins (FLVs) or in a cytochrome p450 (CYP55), we show that FLVs contribute to NO reduction in the light, while CYP55 operates in the dark. Both pathways are active when NO is produced in vivo during the reduction of nitrites and participate in NO homeostasis. Furthermore, NO reduction by both pathways is restricted to chlorophytes, organisms particularly abundant in ocean N2O-producing hot spots. Our results provide a mechanistic understanding of N2O production in eukaryotic phototrophs and represent an important step toward a comprehensive assessment of greenhouse gas emission by aquatic ecosystems.