7 results on '"Adriele A. de Almeida"'
Search Results
2. Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications
- Author
-
Gabriel C Lavorato, Adriele A de Almeida, Carolina Vericat, and Mariano H Fonticelli
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Bioengineering ,General Chemistry ,Electrical and Electronic Engineering - Abstract
Magnetite nanoparticles (NPs) are one of the most investigated nanomaterials so far and modern synthesis methods currently provide an exceptional control of their size, shape, crystallinity and surface functionalization. These advances have enabled their use in different fields ranging from environmental applications to biomedicine. However, several studies have shown that the precise composition and crystal structure of magnetite NPs depend on their redox phase transformations, which have a profound impact on their physicochemical properties and, ultimately, on their technological applications. Although the physical mechanisms behind such chemical transformations in bulk materials have been known for a long time, experiments on NPs with large surface-to-volume ratios have revealed intriguing results. This article is focused on reviewing the current status of the field. Following an introduction on the fundamental properties of magnetite and other related iron oxides (including maghemite and wüstite), some basic concepts on the chemical routes to prepare iron oxide nanomaterials are presented. The key experimental techniques available to study phase transformations in iron oxides, their advantages and drawbacks to the study of nanomaterials are then discussed. The major section of this work is devoted to the topotactic oxidation of magnetite NPs and, in this regard, the cation diffusion model that accounts for the experimental results on the kinetics of the process is critically examined. Since many synthesis routes rely on the formation of monodisperse magnetite NPs via oxidation of wüstite counterparts, the modulation of their physical properties by crystal defects arising from the oxidation process is also described. Finally, the importance of a precise control of the composition and structure of magnetite-based NPs is discussed and its role in their biomedical applications is highlighted.
- Published
- 2023
- Full Text
- View/download PDF
3. Adjusting the Néel relaxation time of Fe
- Author
-
Fernando, Fabris, Javier, Lohr, Enio, Lima, Adriele Aparecida, de Almeida, Horacio E, Troiani, Luis M, Rodríguez, Marcelo, Vásquez Mansilla, Myriam H, Aguirre, Gerardo F, Goya, Daniele, Rinaldi, Alberto, Ghirri, Davide, Peddis, Dino, Fiorani, Roberto D, Zysler, Emilio, De Biasi, and Elin L, Winkler
- Abstract
In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe
- Published
- 2020
4. Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia
- Author
-
Myriam H. Aguirre, Gerardo F. Goya, Alberto Ghirri, Horacio Esteban Troiani, Fernando Fabris, Marcelo Vasquez Mansilla, Emilio De Biasi, Javier Hernán Lohr, Elin L. Winkler, Enio Lima, Davide Peddis, Luis M. Rodríguez, Daniele Rinaldi, Dino Fiorani, Roberto D. Zysler, and Adriele Aparecida de Almeida
- Subjects
Materials science ,Neel relaxation time ,Analytical chemistry ,Shell (structure) ,Nanoparticle ,Bioengineering ,core/shell nanoparticles ,magnetic fluid hyperthermia ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,shell nanoparticles ,Viscosity ,General Materials Science ,el relaxation time ,Electrical and Electronic Engineering ,Mechanical Engineering ,core ,Né ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Magnetic anisotropy ,Magnetic hyperthermia ,Mechanics of Materials ,Heat generation ,Particle ,Atomic ratio ,0210 nano-technology - Abstract
In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Neel relaxation time in core/shell bimagnetic nanoparticles, for Magnetic Fluid Hyperthermia applications. To pursue this goal, Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ~1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn+Co) at%) changes from 33 at% to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of magnetic fluid hyperthermia of 0.1 wt% of these particles dispersed in water, DMEM (Dulbecco modified Eagles minimal essential medium) and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W/g, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that requiere smaller particle sizes .
- Published
- 2020
- Full Text
- View/download PDF
5. Magnetic hyperthermia experiments with magnetic nanoparticles in clarified butter oil and paraffin: A thermodynamic analysis
- Author
-
Marcelo Vasquez Mansilla, Enio Lima, Luis M. Rodríguez, Emilio De Biasi, Roberto D. Zysler, Adriele A. de Almeida, G Bernardi, Horacio Esteban Troiani, Daniela P. Valdés, Teobaldo E. Torres, Elin L. Winkler, Gerardo F. Goya, G. Urretavizcaya, and D Fregenal
- Subjects
Physics ,Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Applied Physics (physics.app-ph) ,Physics - Applied Physics ,02 engineering and technology ,Condensed Matter - Soft Condensed Matter ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,3. Good health ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Soft Condensed Matter (cond-mat.soft) ,Physical and Theoretical Chemistry ,0210 nano-technology ,Humanities - Abstract
In Specific Power Absorption (SPA) models for Magnetic Fluid Hyperthermia (MFH) experiments, the magnetic relaxation time of the nanoparticles (NPs) is known to be a fundamental descriptor of the heating mechanisms. The relaxation time is mainly determined by the interplay between the magnetic properties of the NPs and the rheological properties of NPs environment. Although the role of magnetism in MFH has been extensively studied, the thermal properties of the NPs medium and their changes during of MFH experiments have been so far underrated. Here, we show that ZnxFe3-xO4 NPs dispersed through different with phase transition in the temperature range of the experiment: clarified butter oil (CBO) and paraffin. These systems show non-linear behavior of the heating rate within the temperature range of the MFH experiments. For CBO, a fast increase at $306 K$ associated to changes in the viscosity (\texteta(T)) and specific heat (c_p(T)) of the medium below and above its melting temperature. This increment in the heating rate takes place around $318 K$ for paraffin. Magnetic and morphological characterizations of NPs together with the observed agglomeration of the nanoparticles above $306 K$ indicate that the fast increase in MFH curves could not be associated to a change in the magnetic relaxation mechanism, with N\'eel relaxation being dominant. In fact, successive experiment runs performed up to temperatures below and above the CBO melting point resulted in different MFH curves due to agglomeration of NPs driven by magnetic field inhomogeneity during the experiments. Similar effects were observed for paraffin. Our results highlight the relevance of the NPs medium's thermodynamic properties for an accurate measurement of the heating efficiency for in vitro and in vivo environments, where the thermal properties are largely variable within the temperature window of MFH experiments., Comment: 36 pages, 8 figures
- Published
- 2020
6. Effects of Zn Substitution in the Magnetic and Morphological Properties of Fe-Oxide-Based Core–Shell Nanoparticles Produced in a Single Chemical Synthesis
- Author
-
Javier Hernán Lohr, Luis M. Rodríguez, Renato Cohen, Marcelo Vasquez Mansilla, Rodrigo Fernández-Pacheco, M. Sergio Moreno, Luiz Carlos Camargo Miranda Nagamine, Roberto D. Zysler, Enio Lima, D Fregenal, Elfin L. Winkler, H. E. Troiani, Adriele Aparecida de Almeida, Teobaldo Enrique Torres Molina, and Gerardo F. Goya
- Subjects
Fe-Oxide based ,Materials science ,Ciencias Físicas ,Oxide ,Nanoparticle ,02 engineering and technology ,Core shell nanoparticles ,010402 general chemistry ,01 natural sciences ,Chemical synthesis ,purl.org/becyt/ford/1 [https] ,chemistry.chemical_compound ,Physical and Theoretical Chemistry ,Substitution (logic) ,purl.org/becyt/ford/1.3 [https] ,021001 nanoscience & nanotechnology ,Bimagnetic ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,Chemical engineering ,chemistry ,Nanoparticles ,0210 nano-technology ,CIENCIAS NATURALES Y EXACTAS ,Física de los Materiales Condensados - Abstract
Magnetic, compositional, and morphological properties of Zn-Fe-oxide core-shell bimagnetic nanoparticles were studied for three samples with 0.00, 0.06, and 0.10 Zn/Fe ratios, as obtained from particle-induced X-ray emission analysis. The bimagnetic nanoparticles were produced in a one-step synthesis by the thermal decomposition of the respective acetylacetonates. The nanoparticles present an average particle size between 25 and 30 nm as inferred from transmission electron microscopy (TEM). High-resolution TEM images clearly show core-shell morphology for the particles in all samples. The core is composed by an antiferromagnetic (AFM) phase with a Wüstite (Fe 1-y O) structure, whereas the shell is composed by a Zn x Fe 3-x O 4 ferrimagnetic (FiM) spinel phase. Despite the low solubility of Zn in the Wüstite, electron energy-loss spectroscopy analysis indicates that Zn is distributed almost homogeneously in the whole nanoparticle. This result gives information on the formation mechanisms of the particle, indicating that the Wüstite is formed first, and the superficial oxidation results in the FiM ferrite phase with similar Zn concentration than the core. Magnetization and in-field Mössbauer spectroscopy of the Zn-richest nanoparticles indicate that the AFM phase is strongly coupled to the FiM structure of the ferrite shell, resulting in a bias field (H EB ) appearing below TN FeO , with H EB values that depend on the core-shell relative proportion. Magnetic characterization also indicates a strong magnetic frustration for the samples with higher Zn concentration, even at low temperatures. Fil: Lohr, Javier Hernán. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina Fil: de Almeida, Adriele Aparecida. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina Fil: Moreno, Mario Sergio Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Troiani, Horacio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina Fil: Goya, Gerardo Fabian. Universidad de Zaragoza; España Fil: Torres Molina, Teobaldo Enrique. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física. Laboratorio de Resonancias Magnéticas; Argentina. Universidad de Zaragoza; España Fil: Fernandez Pacheco, Rodrigo. Universidad de Zaragoza; España Fil: Winkler, Elin Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Vasquez Mansilla, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Cohen, Renato. Universidade de Sao Paulo; Brasil Fil: Nagamine, Luiz C. C. M.. Universidade de Sao Paulo; Brasil Fil: Rodriguez, Luis Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Fregenal, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Zysler, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Lima, Enio Junior. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
- Published
- 2018
- Full Text
- View/download PDF
7. Ascorbic Acid and BSA Protein in Solution and Films: Interaction and Surface Morphological Structure
- Author
-
Filipe D. S. Gorza, Odin G. C. Godinho, Josmary R. Silva, Graciela C. Pedro, Rafael R. G. Maciel, Adriele A. de Almeida, Tarquin F. Trescher, and Nara C. de Souza
- Subjects
Time Factors ,Article Subject ,Contact time ,lcsh:Medicine ,Ascorbic Acid ,Microscopy, Atomic Force ,General Biochemistry, Genetics and Molecular Biology ,Absorption ,Adsorption ,Animals ,Bovine serum albumin ,Aqueous solution ,General Immunology and Microbiology ,biology ,Chemistry ,lcsh:R ,Tryptophan ,Serum Albumin, Bovine ,General Medicine ,Ascorbic acid ,Binding constant ,Solutions ,Solvent ,Biochemistry ,Linear Models ,biology.protein ,Cattle ,Research Article ,Protein Binding ,Nuclear chemistry - Abstract
This paper reports on the study of the interactions between ascorbic acid (AA) and bovine serum albumin (BSA) in aqueous solution as well as in films (BSA/AA films) prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet) was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, , determined for aggregates from BSA and AA was found to be about 102 M−1, which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.