Michael Nicklas, Chandra Shekhar, Nitesh Kumar, Claudia Felser, Yan Sun, Adolfo G. Grushin, Marcel Naumann, Dmitry A. Sokolov, Shu-Chun Wu, Ricardo Donizeth dos Reis, Jens H. Bardarson, Michael Baenitz, Binghai Yan, M. O. Ajeesh, Marcus Schmidt, Horst Borrmann, Elena Hassinger, Frank Arnold, University of Science and Technology Beijing [Beijing] (USTB), Chemical Metals Science Department, Max Planck Institute for Chemical Physics of Solids (CPfS), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Department of Physics [Stockholm], Royal Institute of Technology [Stockholm] (KTH ), Max-Planck-Institut für Chemische Physik fester Stoffe (CPfS), Max-Planck-Gesellschaft, Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), and HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)
Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands linearly disperse around pairs of nodes, the Weyl points, of fixed (left or right) chirality. The recent discovery of WSM materials triggered an experimental search for the exotic quantum phenomenon known as the chiral anomaly. Via the chiral anomaly nonorthogonal electric and magnetic fields induce a chiral density imbalance that results in an unconventional negative longitudinal magnetoresistance, the chiral magnetic effect. Recent theoretical work suggests that this effect does not require well-defined Weyl nodes. Experimentally however, it remains an open question to what extent it survives when chirality is not well-defined, for example when the Fermi energy is far away from the Weyl points. Here, we establish the detailed Fermi surface topology of the recently identified WSM TaP via a combination of angle-resolved quantum oscillation spectra and band structure calculations. The Fermi surface forms spin-polarized banana-shaped electron and hole pockets attached to pairs of Weyl points. Although the chiral anomaly is therefore ill-defined, we observe a large negative magnetoresistance (NMR) appearing for collinear magnetic and electric fields as observed in other WSMs. In addition, we show experimental signatures indicating that such longitudinal magnetoresistance measurements can be affected by an inhomogeneous current distribution inside the sample in a magnetic field. Our results provide a clear framework how to detect the chiral magnetic effect., Comment: 57 pages including the supplementary information. 4 figures in the main manuscript and 21 figures in the supplementary information