1. Comparison of machine learning models for the prediction of hypertension in transgender patients undergoing gynecologic surgery
- Author
-
Reetam Ganguli, Jordan Franklin, Xiaotian Yu, Alice Lin, Aditi Vichare, and Stephen Wagner
- Subjects
Medicine - Abstract
Abstract Background Transgender patients face a higher burden of cardiovascular morbidity due to structural and biological stressors, particularly in low-resource settings. No studies exist comparing machine learning model development strategies for this unique patient cohort and limited literature exists comparing data/outcomes between transgender and cisgender populations. Methods We compare machine learning models trained solely on transgender patients against models developed on a size-matched and ratio-matched cohort of cisgender patients and a 300-fold larger, ratio-matched cohort of cisgender patients undergoing obstetric/gynecologic procedures in the National Surgical Quality Improvement Program from January 1, 2005 through December 31, 2019. All models were developed to predict the outcome of hypertension. Statistical significance between models was calculated using 5-by-2 fold cross validation hypothesis testing. Results Among 626,102 patients having an obstetric/gynecologic surgery, there are 1959 transgender patients of which 85,405 (13.7%) have hypertension requiring medication. Saliently, the logistic regression machine learning models trained selectively on the transgender cohort have an AUC of 0.865 (95% CI: 0.83–0.90), with an accuracy of 85% (95% CI: 0.80–0.87) compared to (p
- Published
- 2024
- Full Text
- View/download PDF