1. Modified (2'-deoxy)adenosines activate autophagy primarily through AMPK/ULK1-dependent pathway.
- Author
-
Guseva EA, Kamzeeva PN, Sokolskaya SY, Slushko GK, Belyaev ES, Myasnikov BP, Golubeva JA, Alferova VA, Sergiev PV, and Aralov AV
- Subjects
- Humans, Adenosine chemistry, Adenosine metabolism, Aminoimidazole Carboxamide analogs & derivatives, Aminoimidazole Carboxamide pharmacology, Aminoimidazole Carboxamide chemistry, Deoxyadenosines pharmacology, Deoxyadenosines chemistry, Dose-Response Relationship, Drug, Intracellular Signaling Peptides and Proteins metabolism, Molecular Structure, Structure-Activity Relationship, AMP-Activated Protein Kinases metabolism, Autophagy drug effects, Autophagy-Related Protein-1 Homolog metabolism
- Abstract
Autophagy is a conserved self-digestion process, which governs regulated degradation of cellular components. Autophagy is upregulated upon energy shortage sensed by AMP-dependent protein kinase (AMPK). Autophagy activators might be contemplated as therapies for metabolic neurodegenerative diseases and obesity, as well as cancer, considering tumor-suppressive functions of autophagy. Among them, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr), a nucleoside precursor of the active phosphorylated AMP analog, is the most commonly used pharmacological modulator of AMPK activity, despite its multiple reported "off-target" effects. Here, we assessed the autophagy/mitophagy activation ability of a small set of (2'-deoxy)adenosine derivatives and analogs using a fluorescent reporter assay and immunoblotting analysis. The first two leader compounds, 7,8-dihydro-8-oxo-2'-deoxyadenosine and -adenosine, are nucleoside forms of major oxidative DNA and RNA lesions. The third, a derivative of inactive N
6 -methyladenosine with a metabolizable phosphate-masking group, exhibited the highest activity in the series. These compounds primarily contributed to the activation of AMPK and outperformed AICAr; however, retaining the activity in knockout cell lines for AMPK (ΔAMPK) and its upstream regulator SIRT1 (ΔSIRT1) suggests that AMPK is not a main cellular target. Overall, we confirmed the prospects of searching for autophagy activators among (2'-deoxy)adenosine derivatives and demonstrated the applicability of the phosphate-masking strategy for increasing their efficacy., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF