1. Disordered hinge regions of the AP-3 adaptor complex promote vesicle budding from the late Golgi in yeast.
- Author
-
Leih M, Plemel RL, West M, Angers CG, Merz AJ, and Odorizzi G
- Subjects
- Protein Transport, Golgi Apparatus metabolism, Saccharomyces cerevisiae metabolism, Saccharomyces cerevisiae Proteins metabolism, Saccharomyces cerevisiae Proteins genetics, Saccharomyces cerevisiae Proteins chemistry, Adaptor Protein Complex 3 metabolism, Adaptor Protein Complex 3 genetics
- Abstract
Vesicles bud from maturing Golgi cisternae in a programmed sequence. Budding is mediated by adaptors that recruit cargoes and facilitate vesicle biogenesis. In Saccharomyces cerevisiae, the AP-3 adaptor complex directs cargoes from the Golgi to the lysosomal vacuole. The AP-3 core consists of small and medium subunits complexed with two non-identical large subunits, β3 (Apl6) and δ (Apl5). The C-termini of β3 and δ were thought to be flexible hinges linking the core to ear domains that bind accessory proteins involved in vesicular transport. We found by computational modeling that the yeast β3 and δ hinges are intrinsically disordered and lack folded ear domains. When either hinge is truncated, AP-3 is recruited to the Golgi, but vesicle budding is impaired and cargoes normally sorted into the AP-3 pathway are mistargeted. This budding deficiency causes AP-3 to accumulate on ring-like Golgi structures adjacent to GGA adaptors that, in wild-type cells, bud vesicles downstream of AP-3 during Golgi maturation. Thus, each of the disordered hinges of yeast AP-3 has a crucial role in mediating transport vesicle formation at the Golgi., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2024. Published by The Company of Biologists Ltd.)
- Published
- 2024
- Full Text
- View/download PDF