1. Thermophilic bacterial agent inoculation enhances biodrying of kitchen waste: Insights into process properties, organic degradation, bacterial communities and metabolic pathways.
- Author
-
Yang N, Ji Y, Shao Y, Shi J, Tang T, and Liu L
- Subjects
- Metabolic Networks and Pathways, Microbiota, Bacillus metabolism, Bacillus physiology, Bacteria metabolism, Geobacillus metabolism, Geobacillus physiology, Waste Disposal, Fluid methods, Acinetobacter metabolism, Acinetobacter physiology, Biodegradation, Environmental
- Abstract
The high moisture content of kitchen waste (KW) restricts the future treatment and resource utilization. Biodrying is an effective approach to remove the water of KW. However, conventional biodrying only uses the heat generated by the indigenous microorganisms to remove water, which has long treatment cycle and low moisture removal rate. Microbial bioaugmentation is an emerging approach to improve the biodrying efficiency of KW. In this study, a thermophilic bacterial agent (TBA) composed of Bacillus, Geobacillus and Acinetobacter was used to promote water evaporation during the biodrying process. Based on the results, the moisture removal rate of experimental group inoculated with TBA was 82.20 %, which was notably higher than CK group without inoculation. Moreover, TBA significantly increased the amount of organic matter degradation. Microbial community analysis revealed that TBA could promote the proliferation of thermophilic bacteria and make bacterial community more tolerant to high temperature environment. Further analysis of metabolic pathways showed that quorum sensing and glyoxylate and dicarboxylate metabolism were enhanced by TBA inoculation, which can help microorganisms to better adapt to high temperature environment and release more energy to facilitate the water evaporation. This study offers a fresh approach to improve the water removal efficiency in biodrying process., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF