844 results on '"Acinas, Silvia G."'
Search Results
2. Disentangling microbial networks across pelagic zones in the tropical and subtropical global ocean
- Author
-
Deutschmann, Ina M., Delage, Erwan, Giner, Caterina R., Sebastián, Marta, Poulain, Julie, Arístegui, Javier, Duarte, Carlos M., Acinas, Silvia G., Massana, Ramon, Gasol, Josep M., Eveillard, Damien, Chaffron, Samuel, and Logares, Ramiro
- Published
- 2024
- Full Text
- View/download PDF
3. Expansion of the global RNA virome reveals diverse clades of bacteriophages
- Author
-
Neri, Uri, Wolf, Yuri I, Roux, Simon, Camargo, Antonio Pedro, Lee, Benjamin, Kazlauskas, Darius, Chen, I Min, Ivanova, Natalia, Allen, Lisa Zeigler, Paez-Espino, David, Bryant, Donald A, Bhaya, Devaki, Consortium, RNA Virus Discovery, Narrowe, Adrienne B, Probst, Alexander J, Sczyrba, Alexander, Kohler, Annegret, Séguin, Armand, Shade, Ashley, Campbell, Barbara J, Lindahl, Björn D, Reese, Brandi Kiel, Roque, Breanna M, DeRito, Chris, Averill, Colin, Cullen, Daniel, Beck, David AC, Walsh, David A, Ward, David M, Wu, Dongying, Eloe-Fadrosh, Emiley, Brodie, Eoin L, Young, Erica B, Lilleskov, Erik A, Castillo, Federico J, Martin, Francis M, LeCleir, Gary R, Attwood, Graeme T, Cadillo-Quiroz, Hinsby, Simon, Holly M, Hewson, Ian, Grigoriev, Igor V, Tiedje, James M, Jansson, Janet K, Lee, Janey, VanderGheynst, Jean S, Dangl, Jeff, Bowman, Jeff S, Blanchard, Jeffrey L, Bowen, Jennifer L, Xu, Jiangbing, Banfield, Jillian F, Deming, Jody W, Kostka, Joel E, Gladden, John M, Rapp, Josephine Z, Sharpe, Joshua, McMahon, Katherine D, Treseder, Kathleen K, Bidle, Kay D, Wrighton, Kelly C, Thamatrakoln, Kimberlee, Nusslein, Klaus, Meredith, Laura K, Ramirez, Lucia, Buee, Marc, Huntemann, Marcel, Kalyuzhnaya, Marina G, Waldrop, Mark P, Sullivan, Matthew B, Schrenk, Matthew O, Hess, Matthias, Vega, Michael A, O’Malley, Michelle A, Medina, Monica, Gilbert, Naomi E, Delherbe, Nathalie, Mason, Olivia U, Dijkstra, Paul, Chuckran, Peter F, Baldrian, Petr, Constant, Philippe, Stepanauskas, Ramunas, Daly, Rebecca A, Lamendella, Regina, Gruninger, Robert J, McKay, Robert M, Hylander, Samuel, Lebeis, Sarah L, Esser, Sarah P, Acinas, Silvia G, Wilhelm, Steven S, Singer, Steven W, Tringe, Susannah S, Woyke, Tanja, Reddy, TBK, Bell, Terrence H, Mock, Thomas, McAllister, Tim, and Thiel, Vera
- Subjects
Microbiology ,Biological Sciences ,Bioinformatics and Computational Biology ,Infectious Diseases ,Genetics ,Microbiome ,Biotechnology ,Infection ,Bacteriophages ,DNA-Directed RNA Polymerases ,Genome ,Viral ,Phylogeny ,RNA ,RNA Viruses ,RNA-Dependent RNA Polymerase ,Virome ,RNA Virus Discovery Consortium ,Bactriophage ,Functional protein annotation ,Metatranscriptomics ,RNA Virus ,RNA dependent RNA polymerase ,Viral Ecology ,Virus ,Virus - Host prediction ,viral phylogeny ,Medical and Health Sciences ,Developmental Biology ,Biological sciences ,Biomedical and clinical sciences - Abstract
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.
- Published
- 2022
4. Top abundant deep ocean heterotrophic bacteria can be retrieved by cultivation
- Author
-
Sanz-Sáez, Isabel, Sánchez, Pablo, Salazar, Guillem, Sunagawa, Shinichi, de Vargas, Colomban, Bowler, Chris, Sullivan, Matthew B., Wincker, Patrick, Karsenti, Eric, Pedrós-Alió, Carlos, Agustí, Susana, Gojobori, Takashi, Duarte, Carlos M., Gasol, Josep M., Sánchez, Olga, and Acinas, Silvia G.
- Published
- 2023
- Full Text
- View/download PDF
5. Water mass age structures the auxiliary metabolic gene content of free-living and particle-attached deep ocean viral communities
- Author
-
Coutinho, Felipe H., Silveira, Cynthia B., Sebastián, Marta, Sánchez, Pablo, Duarte, Carlos M., Vaqué, Dolors, Gasol, Josep M., and Acinas, Silvia G.
- Published
- 2023
- Full Text
- View/download PDF
6. Abiotic selection of microbial genome size in the global ocean
- Author
-
Ngugi, David K., Acinas, Silvia G., Sánchez, Pablo, Gasol, Josep M., Agusti, Susana, Karl, David M., and Duarte, Carlos M.
- Published
- 2023
- Full Text
- View/download PDF
7. Genomic and transcriptomic characterization of methylmercury detoxification in a deep ocean Alteromonas mediterranea ISS312
- Author
-
Pereira-Garcia, Carla, Sanz-Sáez, Isabel, Sánchez, Pablo, Coutinho, Felipe H., Bravo, Andrea G., Sánchez, Olga, and Acinas, Silvia G.
- Published
- 2024
- Full Text
- View/download PDF
8. Unmasking the physiology of mercury detoxifying bacteria from polluted sediments
- Author
-
Pereira-García, Carla, del Amo, Elena H., Vigués, Núria, Rey-Velasco, Xavier, Rincón-Tomás, Blanca, Pérez-Cruz, Carla, Sanz-Sáez, Isabel, Hu, Haiyan, Bertilsson, Stefan, Pannier, Angela, Soltmann, Ulrich, Sánchez, Pablo, Acinas, Silvia G., Bravo, Andrea G., Alonso-Sáez, Laura, and Sánchez, Olga
- Published
- 2024
- Full Text
- View/download PDF
9. Revisiting the mercury cycle in marine sediments: A potential multifaceted role for Desulfobacterota
- Author
-
Rincón-Tomás, Blanca, Lanzén, Anders, Sánchez, Pablo, Estupiñán, Mónica, Sanz-Sáez, Isabel, Bilbao, M. Elisabete, Rojo, Diana, Mendibil, Iñaki, Pérez-Cruz, Carla, Ferri, Marta, Capo, Eric, Abad-Recio, Ion L., Amouroux, David, Bertilsson, Stefan, Sánchez, Olga, Acinas, Silvia G., and Alonso-Sáez, Laura
- Published
- 2024
- Full Text
- View/download PDF
10. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities.
- Author
-
Acinas, Silvia G, Sánchez, Pablo, Salazar, Guillem, Cornejo-Castillo, Francisco M, Sebastián, Marta, Logares, Ramiro, Royo-Llonch, Marta, Paoli, Lucas, Sunagawa, Shinichi, Hingamp, Pascal, Ogata, Hiroyuki, Lima-Mendez, Gipsi, Roux, Simon, González, José M, Arrieta, Jesús M, Alam, Intikhab S, Kamau, Allan, Bowler, Chris, Raes, Jeroen, Pesant, Stéphane, Bork, Peer, Agustí, Susana, Gojobori, Takashi, Vaqué, Dolors, Sullivan, Matthew B, Pedrós-Alió, Carlos, Massana, Ramon, Duarte, Carlos M, and Gasol, Josep M
- Subjects
Bacteria ,DNA ,Bacterial ,Seawater ,Photosynthesis ,Metagenome ,Carbon Cycle - Abstract
The deep sea, the largest ocean's compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles drive functional differences in bathypelagic prokaryotic communities, regardless of their biogeography. Ammonia and CO oxidation pathways are enriched in the free-living microbial communities and dissimilatory nitrate reduction to ammonium and H2 oxidation pathways in the particle-attached, while the Calvin Benson-Bassham cycle is the most prevalent inorganic carbon fixation pathway in both size fractions. Reconstruction of the Malaspina Deep Metagenome-Assembled Genomes reveals unique non-cyanobacterial diazotrophic bacteria and chemolithoautotrophic prokaryotes. The widespread potential to grow both autotrophically and heterotrophically suggests that mixotrophy is an ecologically relevant trait in the deep ocean. These results expand our understanding of the functional microbial structure and metabolic capabilities of the largest Earth aquatic ecosystem.
- Published
- 2021
11. Roadmap for naming uncultivated Archaea and Bacteria
- Author
-
Murray, Alison E, Freudenstein, John, Gribaldo, Simonetta, Hatzenpichler, Roland, Hugenholtz, Philip, Kämpfer, Peter, Konstantinidis, Konstantinos T, Lane, Christopher E, Papke, R Thane, Parks, Donovan H, Rossello-Mora, Ramon, Stott, Matthew B, Sutcliffe, Iain C, Thrash, J Cameron, Venter, Stephanus N, Whitman, William B, Acinas, Silvia G, Amann, Rudolf I, Anantharaman, Karthik, Armengaud, Jean, Baker, Brett J, Barco, Roman A, Bode, Helge B, Boyd, Eric S, Brady, Carrie L, Carini, Paul, Chain, Patrick SG, Colman, Daniel R, DeAngelis, Kristen M, de los Rios, Maria Asuncion, Estrada-de los Santos, Paulina, Dunlap, Christopher A, Eisen, Jonathan A, Emerson, David, Ettema, Thijs JG, Eveillard, Damien, Girguis, Peter R, Hentschel, Ute, Hollibaugh, James T, Hug, Laura A, Inskeep, William P, Ivanova, Elena P, Klenk, Hans-Peter, Li, Wen-Jun, Lloyd, Karen G, Löffler, Frank E, Makhalanyane, Thulani P, Moser, Duane P, Nunoura, Takuro, Palmer, Marike, Parro, Victor, Pedrós-Alió, Carlos, Probst, Alexander J, Smits, Theo HM, Steen, Andrew D, Steenkamp, Emma T, Spang, Anja, Stewart, Frank J, Tiedje, James M, Vandamme, Peter, Wagner, Michael, Wang, Feng-Ping, Yarza, Pablo, Hedlund, Brian P, and Reysenbach, Anna-Louise
- Subjects
Microbiology ,Biological Sciences ,Ecology ,Archaea ,Bacteria ,DNA ,Bacterial ,Metagenome ,Phylogeny ,Prokaryotic Cells ,Sequence Analysis ,DNA ,Terminology as Topic ,Medical Microbiology - Abstract
The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.
- Published
- 2020
12. Towards a Global Perspective of the Marine Microbiome
- Author
-
Acinas, Silvia G., Sebastián, Marta, Ferrera, Isabel, Stal, Lucas J., editor, and Cretoiu, Mariana Silvia, editor
- Published
- 2022
- Full Text
- View/download PDF
13. Biosynthetic potential of the global ocean microbiome
- Author
-
Paoli, Lucas, Ruscheweyh, Hans-Joachim, Forneris, Clarissa C., Hubrich, Florian, Kautsar, Satria, Bhushan, Agneya, Lotti, Alessandro, Clayssen, Quentin, Salazar, Guillem, Milanese, Alessio, Carlström, Charlotte I., Papadopoulou, Chrysa, Gehrig, Daniel, Karasikov, Mikhail, Mustafa, Harun, Larralde, Martin, Carroll, Laura M., Sánchez, Pablo, Zayed, Ahmed A., Cronin, Dylan R., Acinas, Silvia G., Bork, Peer, Bowler, Chris, Delmont, Tom O., Gasol, Josep M., Gossert, Alvar D., Kahles, André, Sullivan, Matthew B., Wincker, Patrick, Zeller, Georg, Robinson, Serina L., Piel, Jörn, and Sunagawa, Shinichi
- Published
- 2022
- Full Text
- View/download PDF
14. Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome
- Author
-
Salazar, Guillem, Paoli, Lucas, Alberti, Adriana, Huerta-Cepas, Jaime, Ruscheweyh, Hans-Joachim, Cuenca, Miguelangel, Field, Christopher M, Coelho, Luis Pedro, Cruaud, Corinne, Engelen, Stefan, Gregory, Ann C, Labadie, Karine, Marec, Claudie, Pelletier, Eric, Royo-Llonch, Marta, Roux, Simon, Sánchez, Pablo, Uehara, Hideya, Zayed, Ahmed A, Zeller, Georg, Carmichael, Margaux, Dimier, Céline, Ferland, Joannie, Kandels, Stefanie, Picheral, Marc, Pisarev, Sergey, Poulain, Julie, Coordinators, Tara Oceans, Acinas, Silvia G, Babin, Marcel, Bork, Peer, Boss, Emmanuel, Bowler, Chris, Cochrane, Guy, de Vargas, Colomban, Follows, Michael, Gorsky, Gabriel, Grimsley, Nigel, Guidi, Lionel, Hingamp, Pascal, Iudicone, Daniele, Jaillon, Olivier, Kandels-Lewis, Stefanie, Karp-Boss, Lee, Karsenti, Eric, Not, Fabrice, Ogata, Hiroyuki, Pesant, Stephane, Poulton, Nicole, Raes, Jeroen, Sardet, Christian, Speich, Sabrina, Stemmann, Lars, Sullivan, Matthew B, Sunagawa, Shinichi, and Wincker, Patrick
- Subjects
Genetics ,Climate Action ,Gene Expression Regulation ,Geography ,Metagenome ,Microbiota ,Molecular Sequence Annotation ,Oceans and Seas ,RNA ,Messenger ,Seawater ,Temperature ,Transcriptome ,Tara Oceans Coordinators ,Tara Oceans ,biogeochemistry ,community turnover ,eco-systems biology ,gene expression change ,global ocean microbiome ,metagenome ,metatranscriptome ,microbial ecology ,ocean warming ,Biological Sciences ,Medical and Health Sciences ,Developmental Biology - Abstract
Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.
- Published
- 2019
15. Marine DNA Viral Macro- and Microdiversity from Pole to Pole
- Author
-
Gregory, Ann C, Zayed, Ahmed A, Conceição-Neto, Nádia, Temperton, Ben, Bolduc, Ben, Alberti, Adriana, Ardyna, Mathieu, Arkhipova, Ksenia, Carmichael, Margaux, Cruaud, Corinne, Dimier, Céline, Domínguez-Huerta, Guillermo, Ferland, Joannie, Kandels, Stefanie, Liu, Yunxiao, Marec, Claudie, Pesant, Stéphane, Picheral, Marc, Pisarev, Sergey, Poulain, Julie, Tremblay, Jean-Éric, Vik, Dean, Coordinators, Tara Oceans, Acinas, Silvia G, Babin, Marcel, Bork, Peer, Boss, Emmanuel, Bowler, Chris, Cochrane, Guy, de Vargas, Colomban, Follows, Michael, Gorsky, Gabriel, Grimsley, Nigel, Guidi, Lionel, Hingamp, Pascal, Iudicone, Daniele, Jaillon, Olivier, Kandels-Lewis, Stefanie, Karp-Boss, Lee, Karsenti, Eric, Not, Fabrice, Ogata, Hiroyuki, Poulton, Nicole, Raes, Jeroen, Sardet, Christian, Speich, Sabrina, Stemmann, Lars, Sullivan, Matthew B, Sunagawa, Shinichi, Wincker, Patrick, Culley, Alexander I, Dutilh, Bas E, and Roux, Simon
- Subjects
Genetics ,Infection ,Life Below Water ,Aquatic Organisms ,Biodiversity ,DNA Viruses ,DNA ,Viral ,Metagenome ,Water Microbiology ,Tara Oceans Coordinators ,community ecology ,diversity gradients ,marine biology ,metagenomics ,population ecology ,species ,viruses ,Biological Sciences ,Medical and Health Sciences ,Developmental Biology - Abstract
Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (inter-population diversity) and microdiversity (intra-population genetic variation). These patterns sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models.
- Published
- 2019
16. Community‐Level Responses to Iron Availability in Open Ocean Plankton Ecosystems
- Author
-
Caputi, Luigi, Carradec, Quentin, Eveillard, Damien, Kirilovsky, Amos, Pelletier, Eric, Pierella Karlusich, Juan J, Rocha Jimenez Vieira, Fabio, Villar, Emilie, Chaffron, Samuel, Malviya, Shruti, Scalco, Eleonora, Acinas, Silvia G, Alberti, Adriana, Aury, Jean‐Marc, Benoiston, Anne‐Sophie, Bertrand, Alexis, Biard, Tristan, Bittner, Lucie, Boccara, Martine, Brum, Jennifer R, Brunet, Christophe, Busseni, Greta, Carratalà, Anna, Claustre, Hervé, Coelho, Luis Pedro, Colin, Sébastien, D'Aniello, Salvatore, Da Silva, Corinne, Del Core, Marianna, Doré, Hugo, Gasparini, Stéphane, Kokoszka, Florian, Jamet, Jean‐Louis, Lejeusne, Christophe, Lepoivre, Cyrille, Lescot, Magali, Lima‐Mendez, Gipsi, Lombard, Fabien, Lukeš, Julius, Maillet, Nicolas, Madoui, Mohammed‐Amin, Martinez, Elodie, Mazzocchi, Maria Grazia, Néou, Mario B, Paz‐Yepes, Javier, Poulain, Julie, Ramondenc, Simon, Romagnan, Jean‐Baptiste, Roux, Simon, Salvagio Manta, Daniela, Sanges, Remo, Speich, Sabrina, Sprovieri, Mario, Sunagawa, Shinichi, Taillandier, Vincent, Tanaka, Atsuko, Tirichine, Leila, Trottier, Camille, Uitz, Julia, Veluchamy, Alaguraj, Veselá, Jana, Vincent, Flora, Yau, Sheree, Kandels‐Lewis, Stefanie, Searson, Sarah, Dimier, Céline, Picheral, Marc, Bork, Peer, Boss, Emmanuel, Vargas, Colomban, Follows, Michael J, Grimsley, Nigel, Guidi, Lionel, Hingamp, Pascal, Karsenti, Eric, Sordino, Paolo, Stemmann, Lars, Sullivan, Matthew B, Tagliabue, Alessandro, Zingone, Adriana, Garczarek, Laurence, d'Ortenzio, Fabrizio, Testor, Pierre, Not, Fabrice, d'Alcalà, Maurizio Ribera, Wincker, Patrick, Bowler, Chris, Iudicone, Daniele, Gorsky, Gabriel, and Jaillon, Olivier
- Subjects
Genetics ,Life Below Water ,Atmospheric Sciences ,Geochemistry ,Oceanography ,Meteorology & Atmospheric Sciences - Abstract
Predicting responses of plankton to variations in essential nutrients is hampered by limited in situ measurements, a poor understanding of community composition, and the lack of reference gene catalogs for key taxa. Iron is a key driver of plankton dynamics and, therefore, of global biogeochemical cycles and climate. To assess the impact of iron availability on plankton communities, we explored the comprehensive bio-oceanographic and bio-omics data sets from Tara Oceans in the context of the iron products from two state-of-the-art global scale biogeochemical models. We obtained novel information about adaptation and acclimation toward iron in a range of phytoplankton, including picocyanobacteria and diatoms, and identified whole subcommunities covarying with iron. Many of the observed global patterns were recapitulated in the Marquesas archipelago, where frequent plankton blooms are believed to be caused by natural iron fertilization, although they are not captured in large-scale biogeochemical models. This work provides a proof of concept that integrative analyses, spanning from genes to ecosystems and viruses to zooplankton, can disentangle the complexity of plankton communities and can lead to more accurate formulations of resource bioavailability in biogeochemical models, thus improving our understanding of plankton resilience in a changing environment.
- Published
- 2019
17. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean
- Author
-
Sunagawa, Shinichi, Acinas, Silvia G., Bork, Peer, Karsenti, Eric, Bowler, Chris, Sardet, Christian, Stemmann, Lars, de Vargas, Colomban, Wincker, Patrick, Lescot, Magali, Babin, Marcel, Gorsky, Gabriel, Grimsley, Nigel, Guidi, Lionel, Hingamp, Pascal, Jaillon, Olivier, Kandels, Stefanie, Iudicone, Daniele, Ogata, Hiroyuki, Pesant, Stéphane, Sullivan, Matthew B., Not, Fabrice, Lee, Karp-Boss, Boss, Emmanuel, Cochrane, Guy, Follows, Michael, Poulton, Nicole, Raes, Jeroen, Sieracki, Mike, Speich, Sabrina, Delmont, Tom O., Gaia, Morgan, Hinsinger, Damien D., Frémont, Paul, Vanni, Chiara, Fernandez-Guerra, Antonio, Eren, A. Murat, Kourlaiev, Artem, d'Agata, Leo, Clayssen, Quentin, Villar, Emilie, Labadie, Karine, Cruaud, Corinne, Poulain, Julie, Da Silva, Corinne, Wessner, Marc, Noel, Benjamin, Aury, Jean-Marc, and Pelletier, Eric
- Published
- 2022
- Full Text
- View/download PDF
18. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean
- Author
-
Royo-Llonch, Marta, Sánchez, Pablo, Ruiz-González, Clara, Salazar, Guillem, Pedrós-Alió, Carlos, Sebastián, Marta, Labadie, Karine, Paoli, Lucas, M. Ibarbalz, Federico, Zinger, Lucie, Churcheward, Benjamin, Chaffron, Samuel, Eveillard, Damien, Karsenti, Eric, Sunagawa, Shinichi, Wincker, Patrick, Karp-Boss, Lee, Bowler, Chris, and Acinas, Silvia G.
- Published
- 2021
- Full Text
- View/download PDF
19. UCYN-A3, a newly characterized open ocean sublineage of the symbiotic N2-fixing cyanobacterium Candidatus Atelocyanobacterium thalassa
- Author
-
Cornejo Castillo, Francisco M., Muñoz-Marin, Maria del Carmen, Turk-Kubo, Kendra A., Royo-Llonch, Marta, Farnelid, Hanna, Acinas, Silvia G, and Zehr, Jonathan P
- Abstract
The symbiotic unicellular cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) is one of the most abundant and widespread nitrogen (N2)-fixing cyanobacteria in the ocean. Although it remains uncultivated, multiple sublineages have been detected based on partial nitrogenase (nifH) gene sequences, including the four most commonly detected sublineages UCYN-A1, UCYN-A2, UCYN-A3 and UCYN-A4. However, very little is known about UCYN-A3 beyond the nifH sequences from nifH gene diversity surveys. In this study, single cell sorting, DNA sequencing, qPCR and CARD-FISH assays revealed discrepancies involving the identification of sublineages, which led to new information on the diversity of the UCYN-A symbiosis. 16S rRNA and nifH gene sequencing on single sorted cells allowed us to identify the 16S rRNA gene of the uncharacterized UCYN-A3 sublineage. We designed new CARD-FISH probes that allowed us to distinguish and observe UCYN-A2 in a coastal location (SIO Pier; San Diego) and UCYN-A3 in an open ocean location (Station ALOHA; Hawaii). Moreover, we reconstructed about 13% of the UCYN-A3 genome from Tara Oceans metagenomic data. Finally, our findings unveil the UCYN-A3 symbiosis in open ocean waters suggesting that the different UCYN-A sublineages are distributed along different size fractions of the plankton defined by the cell-size ranges of their prymnesiophyte hosts.
- Published
- 2018
20. Corrigendum: Metagenomic probing toward an atlas of the taxonomic and metabolic foundations of the global ocean genome
- Author
-
Laiolo, Elisa, primary, Alam, Intikhab, additional, Uludag, Mahmut, additional, Jamil, Tahira, additional, Agusti, Susana, additional, Gojobori, Takashi, additional, Acinas, Silvia G., additional, Gasol, Josep M., additional, and Duarte, Carlos M., additional
- Published
- 2024
- Full Text
- View/download PDF
21. Ubiquity of inverted ’gelatinous’ ecosystem pyramids in the global ocean
- Author
-
Lombard, Fabien, Guidi, Lionel, Brandão, Manoela C., Coelho Luis, Pedro, Colin, Sébastien, Dolan, John Richard, Elineau, Amanda, Gasol, Josep M, Grondin, Pierre Luc, Henry, Nicolas, Ibarbalz, Federico M, Jalabert, Laetitia, Loreau, Michel, Martini, Séverine, Mériguet, Zoé, Picheral, Marc, Pierella Karlusich, Juan José, Pepperkok, Rainer, Romagnan, Jean-baptiste, Zinger, Lucie, Stemmann, Lars, Acinas, Silvia G, Lee, Karp-boss, Boss, Emmanuel, Sullivan, Matthew B., De Vargas, Colomban, Bowler, Chris, Karsenti, Eric, Gorsky, Gabriel, Lombard, Fabien, Guidi, Lionel, Brandão, Manoela C., Coelho Luis, Pedro, Colin, Sébastien, Dolan, John Richard, Elineau, Amanda, Gasol, Josep M, Grondin, Pierre Luc, Henry, Nicolas, Ibarbalz, Federico M, Jalabert, Laetitia, Loreau, Michel, Martini, Séverine, Mériguet, Zoé, Picheral, Marc, Pierella Karlusich, Juan José, Pepperkok, Rainer, Romagnan, Jean-baptiste, Zinger, Lucie, Stemmann, Lars, Acinas, Silvia G, Lee, Karp-boss, Boss, Emmanuel, Sullivan, Matthew B., De Vargas, Colomban, Bowler, Chris, Karsenti, Eric, and Gorsky, Gabriel
- Abstract
Summary paragraph Plankton are essential in marine ecosystems. However, our knowledge of overall community structure is sparse due to inconsistent sampling across their very large organismal size range. Here we use diverse imaging methods to establish complete plankton inventories of organisms spanning five orders of magnitude in size. Plankton community size and trophic structure variation validate a long-held theoretical link between organism size-spectra and ecosystem trophic structures. We found that predator/grazer biomass and biovolume unexpectedly exceed that of primary producers at most (55%) locations, likely due to our better quantification of gelatinous organisms. Bottom- heavy ecosystems (the norm on land) appear to be rare in the ocean. Collectively, gelatinous organisms represent 30% of the total biovolume (8-9% of carbon) of marine plankton communities from tropical to polar ecosystems. Communities can be split into three extreme typologies: diatom/copepod-dominated in eutrophic blooms, rhizarian/chaetognath-dominated in oligotrophic tropical oceans, and gelatinous-dominated elsewhere. While plankton taxonomic composition changes with latitude, functional and trophic structures mostly depend on the amount of prey available for each trophic level. Given future projections of oligotrophication of marine ecosystems, our findings suggest that rhizarian and gelatinous organisms will increasingly dominate the apex position of planktonic ecosystems, leading to significant changes in the ocean’s carbon cycle.
- Published
- 2024
- Full Text
- View/download PDF
22. Water aging and the quality of organic carbon sources drive niche partitioning of the active bathypelagic prokaryotic microbiome
- Author
-
Ministerio de Economía y Competitividad (España), Department of Energy (US), Consejo Superior de Investigaciones Científicas (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia e Innovación (España), Sebastián, Marta [0000-0001-7175-8941], Álvarez-Salgado, Xosé Antón [0000-0002-2387-9201], Reche, Isabel [/0000-0003-2908-1724], Morán, Xosé Anxelu G.[ 0000-0002-9823-5339], Sebastián, Marta, Sánchez Fernández, Pablo, Salazar, Guillem, Álvarez-Salgado, Xosé Antón, Reche, Isabel, Morán, Xosé Anxelu G., Sala, M. Montserrat, Duarte, Carlos M., Acinas, Silvia G., Gasol, Josep M., Ministerio de Economía y Competitividad (España), Department of Energy (US), Consejo Superior de Investigaciones Científicas (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia e Innovación (España), Sebastián, Marta [0000-0001-7175-8941], Álvarez-Salgado, Xosé Antón [0000-0002-2387-9201], Reche, Isabel [/0000-0003-2908-1724], Morán, Xosé Anxelu G.[ 0000-0002-9823-5339], Sebastián, Marta, Sánchez Fernández, Pablo, Salazar, Guillem, Álvarez-Salgado, Xosé Antón, Reche, Isabel, Morán, Xosé Anxelu G., Sala, M. Montserrat, Duarte, Carlos M., Acinas, Silvia G., and Gasol, Josep M.
- Abstract
Due to the scarcity of organic matter (OM) sources in the bathypelagic (1000–4000 m depth), prokaryotic metabolism is believed to be concentrated on particles originating from the surface. However, the structure of active bathypelagic prokaryotic communities and how it changes across environmental gradients remains unexplored. Using a combination of 16S rRNA gene and transcripts sequencing, metagenomics, and substrate uptake potential measurements, here we aimed to explore how water masses aging and the quality of OM influence the structure of the active microbiome, and the potential implications for community function. We found that the relative contribution of taxa with a free-living lifestyle to the active microbiome increased in older water masses that were enriched in recalcitrant OM, suggesting that these prokaryotes may also play a substantial role in the bathypelagic metabolism of vast areas of the ocean. In comparison to particle-associated prokaryotes, free-living prokaryotes exhibited lower potential metabolic rates, and harbored a limited number of two-component sensory systems, suggesting they have less ability to sense and respond to environmental cues. In contrast, particle-associated prokaryotes carried genes for particle colonization and carbohydrate utilization that were absent in prokaryotes with a free-living lifestyle. Consistently, we observed that prokaryotic communities inhabiting older waters displayed reduced abilities to colonize particles, and higher capabilities to use complex carbon sources, compared to communities in waters with a higher proportion of labile OM. Our results provide evidence of regionalization of the bathypelagic active prokaryotic microbiome, unveiling a niche partitioning based on the quality of OM
- Published
- 2024
23. Ocean microbes and blue biotechnology
- Author
-
Acinas, Silvia G. and Acinas, Silvia G.
- Published
- 2024
24. Panel discussion on mapping the global ocean genome
- Author
-
Gasol, Josep M., Duarte, Carlos M., Laiolo, Elisa, Acinas, Silvia G., Nichols Gould, Courtney, Kalas, Peggy, Weiskel, Heidi, Gasol, Josep M., Duarte, Carlos M., Laiolo, Elisa, Acinas, Silvia G., Nichols Gould, Courtney, Kalas, Peggy, and Weiskel, Heidi
- Published
- 2024
25. Revisiting the mercury cycle in marine sediments: A potential multifaceted role for Desulfobacterota
- Author
-
European Commission, Eusko Jaurlaritza, Agencia Estatal de Investigación (España), Rincón-Tomás, Blanca, Lanzén, Anders, Sánchez Fernández, Pablo, Estupiñán, Mónica, Sanz-Sáez, Isabel, Bilbao, M. Elisabete, Rojo, Diana, Mendibil, Iñaki, Pérez-Cruz, Carla, Ferri, Marta, Capo, Eric, Abad-Recio, Ion L., Amouroux, David, Bertilsson, Stefan, Sánchez, Olga, Acinas, Silvia G., Alonso-Sáez, Laura, European Commission, Eusko Jaurlaritza, Agencia Estatal de Investigación (España), Rincón-Tomás, Blanca, Lanzén, Anders, Sánchez Fernández, Pablo, Estupiñán, Mónica, Sanz-Sáez, Isabel, Bilbao, M. Elisabete, Rojo, Diana, Mendibil, Iñaki, Pérez-Cruz, Carla, Ferri, Marta, Capo, Eric, Abad-Recio, Ion L., Amouroux, David, Bertilsson, Stefan, Sánchez, Olga, Acinas, Silvia G., and Alonso-Sáez, Laura
- Abstract
Marine sediments impacted by urban and industrial pollutants are typically exposed to reducing conditions and represent major reservoirs of toxic mercury species. Mercury methylation mediated by anaerobic microorganisms is favored under such conditions, yet little is known about potential microbial mechanisms for mercury detoxification. We used culture-independent (metagenomics, metabarcoding) and culture-dependent approaches in anoxic marine sediments to identify microbial indicators of mercury pollution and analyze the distribution of genes involved in mercury reduction (merA) and demethylation (merB). While none of the isolates featured merB genes, 52 isolates, predominantly affiliated with Gammaproteobacteria, were merA positive. In contrast, merA genes detected in metagenomes were assigned to different phyla, including Desulfobacterota, Actinomycetota, Gemmatimonadota, Nitrospirota, and Pseudomonadota. This indicates a widespread capacity for mercury reduction in anoxic sediment microbiomes. Notably, merA genes were predominately identified in Desulfobacterota, a phylum previously associated only with mercury methylation. Marker genes involved in the latter process (hgcAB) were also mainly assigned to Desulfobacterota, implying a potential central and multifaceted role of this phylum in the mercury cycle. Network analysis revealed that Desulfobacterota were associated with anaerobic fermenters, methanogens and sulfur-oxidizers, indicating potential interactions between key players of the carbon, sulfur and mercury cycling in anoxic marine sediments
- Published
- 2024
26. Metagenomic probing toward an atlas of the taxonomic and metabolic foundations of the global ocean genome
- Author
-
Agencia Estatal de Investigación (España), King Abdullah University of Science and Technology, Laiolo, Elisa, Alam, Intikhab, Uludag, Mahmut, Jamil, Tahira, Agustí, Susana, Gojobori, Takashi, Acinas, Silvia G., Gasol, Josep M., Duarte, Carlos M., Agencia Estatal de Investigación (España), King Abdullah University of Science and Technology, Laiolo, Elisa, Alam, Intikhab, Uludag, Mahmut, Jamil, Tahira, Agustí, Susana, Gojobori, Takashi, Acinas, Silvia G., Gasol, Josep M., and Duarte, Carlos M.
- Abstract
The global ocean genome (the pool of genes in marine organisms and the functional information they encode) is a major, untapped resource for science and society with a growing range of biotechnology applications in sectors such as biomedicine, energy, and food. Shotgun sequencing and metagenomics can now be used to catalog the diversity of ocean microbial life and to explore its functional potential, but has been limited by sample coverage, access to suitable sequencing platforms, and computational capacity. Here we provide a novel synthesis of the global ocean genome based on analysis of 2,102 sampled ocean metagenomes, with gene assembly and annotation via the KAUST Metagenome Analysis Platform (KMAP) Global Ocean Gene Catalog 1.0 containing ~317.5 million gene clusters. Taxonomically, we report the distribution of marine genes across the tree of life and different ocean basins and depth zone biomes. Functionally, we map its relationship to protein families and biogeochemical processes, including the major microbial metabolic pathways that process three elements that play fundamental roles in biogeochemical cycles and are relevant to climate change. These data extend our understanding of the complex, dynamic nature of the ocean microbiome and its metabolic capabilities. Further research is of critical global importance both to unlock the potential of the ocean genome and to understand and predict the effects of human-induced changes, including pollution and climate change. Further hypothesis-driven research should target under-sampled deep sea and benthic microbial communities using enhanced metagenomic methods, to better understand marine ecosystem functioning. Investment in the necessary computational capacity is essential, as are suitable intellectual property frameworks
- Published
- 2024
27. Marine picoplankton metagenomes and MAGs from eleven vertical profiles obtained by the Malaspina Expedition
- Author
-
Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, King Abdullah University of Science and Technology, Agencia Estatal de Investigación (España), Sánchez Fernández, Pablo, Coutinho, Felipe Hernandes, Sebastián, Marta, Pernice, Massimo, Rodríguez-Martínez, Raquel, Salazar, Guillem, Cornejo-Castillo, Francisco M., Pesant, Stéphane, López Alforja, Xabier, López-García, Ester-María, Agustí, Susana, Gojobori, Takashi, Logares, Ramiro, Sala, M. Montserrat, Vaqué, Dolors, Massana, Ramon, Duarte, Carlos M., Acinas, Silvia G., Gasol, Josep M., Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, King Abdullah University of Science and Technology, Agencia Estatal de Investigación (España), Sánchez Fernández, Pablo, Coutinho, Felipe Hernandes, Sebastián, Marta, Pernice, Massimo, Rodríguez-Martínez, Raquel, Salazar, Guillem, Cornejo-Castillo, Francisco M., Pesant, Stéphane, López Alforja, Xabier, López-García, Ester-María, Agustí, Susana, Gojobori, Takashi, Logares, Ramiro, Sala, M. Montserrat, Vaqué, Dolors, Massana, Ramon, Duarte, Carlos M., Acinas, Silvia G., and Gasol, Josep M.
- Abstract
The Ocean microbiome has a crucial role in Earth’s biogeochemical cycles. During the last decade, global cruises such as Tara Oceans and the Malaspina Expedition have expanded our understanding of the diversity and genetic repertoire of marine microbes. Nevertheless, there are still knowledge gaps regarding their diversity patterns throughout depth gradients ranging from the surface to the deep ocean. Here we present a dataset of 76 microbial metagenomes (MProfile) of the picoplankton size fraction (0.2–3.0 µm) collected in 11 vertical profiles covering contrasting ocean regions sampled during the Malaspina Expedition circumnavigation (7 depths, from surface to 4,000 m deep). The MProfile dataset produced 1.66 Tbp of raw DNA sequences from which we derived: 17.4 million genes clustered at 95% sequence similarity (M-GeneDB-VP), 2,672 metagenome-assembled genomes (MAGs) of Archaea and Bacteria (Malaspina-VP-MAGs), and over 100,000 viral genomic sequences. This dataset will be a valuable resource for exploring the functional and taxonomic connectivity between the photic and bathypelagic tropical and sub-tropical ocean, while increasing our general knowledge of the Ocean microbiome
- Published
- 2024
28. Disentangling microbial networks across pelagic zones in the tropical and subtropical global ocean
- Author
-
Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), European Commission, Agencia Estatal de Investigación (España), Deutschmann, Ina, Delage, Erwan, Giner, Caterina R., Sebastián, Marta, Poulain, Julie, Arístegui, Javier, Duarte, Carlos M., Acinas, Silvia G., Massana, Ramon, Gasol, Josep M., Eveillard, Damien, Chaffron, Samuel, Logares, Ramiro, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia e Innovación (España), European Commission, Agencia Estatal de Investigación (España), Deutschmann, Ina, Delage, Erwan, Giner, Caterina R., Sebastián, Marta, Poulain, Julie, Arístegui, Javier, Duarte, Carlos M., Acinas, Silvia G., Massana, Ramon, Gasol, Josep M., Eveillard, Damien, Chaffron, Samuel, and Logares, Ramiro
- Abstract
Microbial interactions are vital in maintaining ocean ecosystem function, yet their dynamic nature and complexity remain largely unexplored. Here, we use association networks to investigate possible ecological interactions in the marine microbiome among archaea, bacteria, and picoeukaryotes throughout different depths and geographical regions of the tropical and subtropical global ocean. Our findings reveal that potential microbial interactions change with depth and geographical scale, exhibiting highly heterogeneous distributions. A few potential interactions were global, meaning they occurred across regions at the same depth, while 11-36% were regional within specific depths. The bathypelagic zone had the lowest proportion of global associations, and regional associations increased with depth. Moreover, we observed that most surface water associations do not persist in deeper ocean layers despite microbial vertical dispersal. Our work contributes to a deeper understanding of the tropical and subtropical global ocean interactome, which is essential for addressing the challenges posed by global change
- Published
- 2024
29. Microorganisms Involved in Methylmercury Demethylation and Mercury Reduction are Widely Distributed and Active in the Bathypelagic Deep Ocean Waters.
- Author
-
Sanz-Sáez, Isabel, Bravo, Andrea G., Ferri, Marta, Carreras, Joan-Martí, Sánchez, Olga, Sebastian, Marta, Ruiz-González, Clara, Capo, Eric, Duarte, Carlos M., Gasol, Josep M., Sánchez, Pablo, and Acinas, Silvia G.
- Published
- 2024
- Full Text
- View/download PDF
30. Water aging and the quality of organic carbon sources drive niche partitioning of the active bathypelagic prokaryotic microbiome
- Author
-
Sebastián, Marta, primary, Sánchez, Pablo, additional, Salazar, Guillem, additional, Álvarez‐Salgado, Xosé A., additional, Reche, Isabel, additional, Morán, Xosé Anxelu G., additional, Sala, Maria Montserrat, additional, Duarte, Carlos M., additional, Acinas, Silvia G., additional, and Gasol, Josep M., additional
- Published
- 2024
- Full Text
- View/download PDF
31. The Global Ocean Genome: A “Catalog” of Ocean Life
- Author
-
Laiolo, Elisa, primary, Alam, Intikhab, additional, Uludag, Mahmut, additional, Jamil, Tahira, additional, Agusti, Susana, additional, Gojobori, Takashi, additional, Acinas, Silvia G., additional, Gasol, Josep M., additional, and Duarte, Carlos M., additional
- Published
- 2024
- Full Text
- View/download PDF
32. Metagenomic probing toward an atlas of the taxonomic and metabolic foundations of the global ocean genome
- Author
-
Laiolo, Elisa, primary, Alam, Intikhab, additional, Uludag, Mahmut, additional, Jamil, Tahira, additional, Agusti, Susana, additional, Gojobori, Takashi, additional, Acinas, Silvia G., additional, Gasol, Josep M., additional, and Duarte, Carlos M., additional
- Published
- 2024
- Full Text
- View/download PDF
33. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses.
- Author
-
Roux, Simon, Brum, Jennifer R, Dutilh, Bas E, Sunagawa, Shinichi, Duhaime, Melissa B, Loy, Alexander, Poulos, Bonnie T, Solonenko, Natalie, Lara, Elena, Poulain, Julie, Pesant, Stéphane, Kandels-Lewis, Stefanie, Dimier, Céline, Picheral, Marc, Searson, Sarah, Cruaud, Corinne, Alberti, Adriana, Duarte, Carlos M, Gasol, Josep M, Vaqué, Dolors, Tara Oceans Coordinators, Bork, Peer, Acinas, Silvia G, Wincker, Patrick, and Sullivan, Matthew B
- Subjects
Tara Oceans Coordinators ,Viruses ,Sulfur ,DNA ,Viral ,Ecology ,Ecosystem ,Seawater ,Genes ,Viral ,Genome ,Viral ,Expeditions ,Oceans and Seas ,Metagenome ,Metagenomics ,Nitrogen Cycle ,Geographic Mapping ,Datasets as Topic ,General Science & Technology - Abstract
Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting 'global ocean virome' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they act as key players in nutrient cycling and trophic networks.
- Published
- 2016
34. Plankton networks driving carbon export in the oligotrophic ocean
- Author
-
Guidi, Lionel, Chaffron, Samuel, Bittner, Lucie, Eveillard, Damien, Larhlimi, Abdelhalim, Roux, Simon, Darzi, Youssef, Audic, Stephane, Berline, Léo, Brum, Jennifer R, Coelho, Luis Pedro, Espinoza, Julio Cesar Ignacio, Malviya, Shruti, Sunagawa, Shinichi, Dimier, Céline, Kandels-Lewis, Stefanie, Picheral, Marc, Poulain, Julie, Searson, Sarah, Stemmann, Lars, Not, Fabrice, Hingamp, Pascal, Speich, Sabrina, Follows, Mick, Karp-Boss, Lee, Boss, Emmanuel, Ogata, Hiroyuki, Pesant, Stephane, Weissenbach, Jean, Wincker, Patrick, Acinas, Silvia G, Bork, Peer, de Vargas, Colomban, Iudicone, Daniele, Sullivan, Matthew B, Raes, Jeroen, Karsenti, Eric, Bowler, Chris, and Gorsky, Gabriel
- Subjects
Aquatic Organisms ,Carbon ,Chlorophyll ,Dinoflagellida ,Ecosystem ,Expeditions ,Genes ,Bacterial ,Genes ,Viral ,Geography ,Oceans and Seas ,Photosynthesis ,Plankton ,Seawater ,Synechococcus ,Tara Oceans coordinators ,General Science & Technology - Abstract
The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.
- Published
- 2016
35. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton.
- Author
-
Cornejo-Castillo, Francisco M, Cabello, Ana M, Salazar, Guillem, Sánchez-Baracaldo, Patricia, Lima-Mendez, Gipsi, Hingamp, Pascal, Alberti, Adriana, Sunagawa, Shinichi, Bork, Peer, de Vargas, Colomban, Raes, Jeroen, Bowler, Chris, Wincker, Patrick, Zehr, Jonathan P, Gasol, Josep M, Massana, Ramon, and Acinas, Silvia G
- Subjects
Phytoplankton ,Cyanobacteria ,Genomics ,Seawater ,Nitrogen Fixation ,Symbiosis ,Atlantic Ocean ,Biological Evolution ,Haptophyta ,Genetics ,Human Genome - Abstract
The unicellular cyanobacterium UCYN-A, one of the major contributors to nitrogen fixation in the open ocean, lives in symbiosis with single-celled phytoplankton. UCYN-A includes several closely related lineages whose partner fidelity, genome-wide expression and time of evolutionary divergence remain to be resolved. Here we detect and distinguish UCYN-A1 and UCYN-A2 lineages in symbiosis with two distinct prymnesiophyte partners in the South Atlantic Ocean. Both symbiotic systems are lineage specific and differ in the number of UCYN-A cells involved. Our analyses infer a streamlined genome expression towards nitrogen fixation in both UCYN-A lineages. Comparative genomics reveal a strong purifying selection in UCYN-A1 and UCYN-A2 with a diversification process ∼91 Myr ago, in the late Cretaceous, after the low-nutrient regime period occurred during the Jurassic. These findings suggest that UCYN-A diversified in a co-evolutionary process, wherein their prymnesiophyte partners acted as a barrier driving an allopatric speciation of extant UCYN-A lineages.
- Published
- 2016
36. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods
- Author
-
Pierella Karlusich, Juan José, Pelletier, Eric, Lombard, Fabien, Carsique, Madeline, Dvorak, Etienne, Colin, Sébastien, Picheral, Marc, Cornejo-Castillo, Francisco M., Acinas, Silvia G., Pepperkok, Rainer, Karsenti, Eric, de Vargas, Colomban, Wincker, Patrick, Bowler, Chris, and Foster, Rachel A.
- Published
- 2021
- Full Text
- View/download PDF
37. Tara Oceans: towards global ocean ecosystems biology
- Author
-
Sunagawa, Shinichi, Acinas, Silvia G., Bork, Peer, Bowler, Chris, Eveillard, Damien, Gorsky, Gabriel, Guidi, Lionel, Iudicone, Daniele, Karsenti, Eric, Lombard, Fabien, Ogata, Hiroyuki, Pesant, Stephane, Sullivan, Matthew B., Wincker, Patrick, and de Vargas, Colomban
- Published
- 2020
- Full Text
- View/download PDF
38. Global biogeography of the smallest plankton across ocean depths
- Author
-
Junger, Pedro C., primary, Sarmento, Hugo, additional, Giner, Caterina R., additional, Mestre, Mireia, additional, Sebastián, Marta, additional, Morán, Xosé Anxelu G., additional, Arístegui, Javier, additional, Agustí, Susana, additional, Duarte, Carlos M., additional, Acinas, Silvia G., additional, Massana, Ramon, additional, Gasol, Josep M., additional, and Logares, Ramiro, additional
- Published
- 2023
- Full Text
- View/download PDF
39. Revisiting the mercury cycle in marine sediments: a potential multifaceted role for Desulfobacterota
- Author
-
Rincón-Tomás, Blanca, primary, Lanzén, Anders, additional, Sánchez, Pablo, additional, Estupiñán, Mónica, additional, Sanz-Sáez, Isabel, additional, Bilbao, M. Elisabete, additional, Rojo, Diana, additional, Mendibil, Iñaki, additional, Pérez-Cruz, Carla, additional, Ferri, Marta, additional, Capo, Eric, additional, Abad-Recio, Ion L., additional, Amouroux, David, additional, Bertilsson, Stefan, additional, Sánchez, Olga, additional, Acinas, Silvia G., additional, and Alonso-Sáez, Laura, additional
- Published
- 2023
- Full Text
- View/download PDF
40. Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria
- Author
-
Grébert, Théophile, Doré, Hugo, Partensky, Frédéric, Farrant, Gregory K., Boss, Emmanuel S., Picheral, Marc, Guidi, Lionel, Pesant, Stéphane, Scanlan, David J., Wincker, Patrick, Acinas, Silvia G., Kehoe, David M., and Garczarek, Laurence
- Published
- 2018
41. Important contribution of macroalgae to oceanic carbon sequestration
- Author
-
Ortega, Alejandra, Geraldi, Nathan R., Alam, Intikhab, Kamau, Allan A., Acinas, Silvia G., Logares, Ramiro, Gasol, Josep M., Massana, Ramon, Krause-Jensen, Dorte, and Duarte, Carlos M.
- Published
- 2019
- Full Text
- View/download PDF
42. A Ray of Hope in Analysis of the Function and Diversity of Microbial Communities
- Author
-
Polz, Martin F, Bertilsson, Stefan, Acinas, Silvia G, Hunt, Dana, and BioStor
- Published
- 2003
43. A(r)Ray of Hope in Analysis of the Function and Diversity of Microbial Communities
- Author
-
Polz, Martin F., Bertilsson, Stefan, Acinas, Silvia G., and Hunt, Dana
- Published
- 2003
- Full Text
- View/download PDF
44. Diversity and distribution of marine heterotrophic bacteria from a large culture collection
- Author
-
Sanz-Sáez, Isabel, Salazar, Guillem, Sánchez, Pablo, Lara, Elena, Royo-Llonch, Marta, Sà, Elisabet L., Lucena, Teresa, Pujalte, María J., Vaqué, Dolors, Duarte, Carlos M., Gasol, Josep M., Pedrós-Alió, Carlos, Sánchez, Olga, and Acinas, Silvia G.
- Published
- 2020
- Full Text
- View/download PDF
45. Disentangling the mechanisms shaping the surface ocean microbiota
- Author
-
Logares, Ramiro, Deutschmann, Ina M., Junger, Pedro C., Giner, Caterina R., Krabberød, Anders K., Schmidt, Thomas S. B., Rubinat-Ripoll, Laura, Mestre, Mireia, Salazar, Guillem, Ruiz-González, Clara, Sebastián, Marta, de Vargas, Colomban, Acinas, Silvia G., Duarte, Carlos M., Gasol, Josep M., and Massana, Ramon
- Published
- 2020
- Full Text
- View/download PDF
46. Scaling of species distribution explains the vast potential marine prokaryote diversity
- Author
-
Eguíluz, Victor M., Salazar, Guillem, Fernández-Gracia, Juan, Pearman, John K., Gasol, Josep M., Acinas, Silvia G., Sunagawa, Shinichi, Irigoien, Xabier, and Duarte, Carlos M.
- Published
- 2019
- Full Text
- View/download PDF
47. Predicting global distributions of eukaryotic plankton communities from satellite data
- Author
-
Kaneko, Hiroto, Endo, Hisashi, Henry, Nicolas, Berney, Cédric, Mahe, Frédéric, Poulain, Julie, Labadie, Karine, Beluche, Odette, El Hourany, Roy, Acinas, Silvia G., Babin, Marcel, Bork, Peer, Bowler, Chris, Cochrane, Guy, de Vargas, Colomban, Gorsky, Gabriel, Guidi, Lionel, Grimsley, Nigel, Hingamp, Pascal, Iudicone, Daniele, Jaillon, Olivier, Kandels, Stefanie, Karsenti, Eric, Not, Fabrice, Poulton, Nicole, Pesant, Stéphane, Sardet, Christian, Speich, Sabrina, Stemmann, Lars, Sullivan, Matthew B., Sunagawa, Shinichi, Chaffron, Samuel, Wincker, Patrick, Nakamura, Ryosuke, Karp-Boss, Lee, Boss, Emmanuel, Tomii, Kentaro, Ogata, Hiroshi Y., Kaneko, Hiroto, Endo, Hisashi, Henry, Nicolas, Berney, Cédric, Mahe, Frédéric, Poulain, Julie, Labadie, Karine, Beluche, Odette, El Hourany, Roy, Acinas, Silvia G., Babin, Marcel, Bork, Peer, Bowler, Chris, Cochrane, Guy, de Vargas, Colomban, Gorsky, Gabriel, Guidi, Lionel, Grimsley, Nigel, Hingamp, Pascal, Iudicone, Daniele, Jaillon, Olivier, Kandels, Stefanie, Karsenti, Eric, Not, Fabrice, Poulton, Nicole, Pesant, Stéphane, Sardet, Christian, Speich, Sabrina, Stemmann, Lars, Sullivan, Matthew B., Sunagawa, Shinichi, Chaffron, Samuel, Wincker, Patrick, Nakamura, Ryosuke, Karp-Boss, Lee, Boss, Emmanuel, Tomii, Kentaro, and Ogata, Hiroshi Y.
- Abstract
Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming.
- Published
- 2023
48. A consensus protocol for the recovery of mercury methylation genes from metagenomes
- Author
-
Capo, Eric, Peterson, Benjamin D., Kim, Minjae, Jones, Daniel S., Acinas, Silvia G., Amyot, Marc, Bertilsson, Stefan, Björn, Erik, Buck, Moritz, Cosio, Claudia, Elias, Dwayne A., Gilmour, Cynthia, Goñi-Urriza, Marisol, Gu, Baohua, Lin, Heyu, Liu, Yu-Rong, McMahon, Katherine, Moreau, John W., Pinhassi, Jarone, Podar, Mircea, Puente-Sánchez, Fernando, Sánchez, Pablo, Storck, Veronika, Tada, Yuya, Vigneron, Adrien, Walsh, David A., Vandewalle-Capo, Marine, Bravo, Andrea G., Gionfriddo, Caitlin M., Capo, Eric, Peterson, Benjamin D., Kim, Minjae, Jones, Daniel S., Acinas, Silvia G., Amyot, Marc, Bertilsson, Stefan, Björn, Erik, Buck, Moritz, Cosio, Claudia, Elias, Dwayne A., Gilmour, Cynthia, Goñi-Urriza, Marisol, Gu, Baohua, Lin, Heyu, Liu, Yu-Rong, McMahon, Katherine, Moreau, John W., Pinhassi, Jarone, Podar, Mircea, Puente-Sánchez, Fernando, Sánchez, Pablo, Storck, Veronika, Tada, Yuya, Vigneron, Adrien, Walsh, David A., Vandewalle-Capo, Marine, Bravo, Andrea G., and Gionfriddo, Caitlin M.
- Abstract
Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methylmercury and have been identified from diverse environments, including freshwater and marine ecosystems, Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants discharges and geothermal springs. Here we present the first attempt at a standardized protocol for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-cycling microorganisms in aquatic and terrestrial ecosystems (Hg-MATE) database, a catalogue of hgc genes, provides the most accurate information to date on the taxonomic identity and functional/metabolic attributes of microorganisms responsible for Hg methylation in the environment. Furthermore, we introduce “marky-coco”, a ready-to-use bioinformatic pipeline based on de novo single-metagenome assembly, for easy and accurate characterization of hgc genes from environmental samples. We compared the recovery of hgc genes from environmental metagenomes using the marky-coco pipeline with an approach based on coassembly of multiple metagenomes. Our data show similar efficiency in both approaches for most environments except those with high diversity (i.e., paddy soils) for which a coassembly approach was preferred. Finally, we discuss the definition of true hgc genes and methods to normalize hgc gene counts from metagenomes.
- Published
- 2023
- Full Text
- View/download PDF
49. Unraveling the functional dark matter through global metagenomics
- Author
-
Pavlopoulos, Georgios A., Baltoumas, Fotis A., Liu, Sirui, Selvitopi, Oguz, Camargo, Antonio Pedro, Nayfach, Stephen, Azad, Ariful, Roux, Simon, Call, Lee, Ivanova, Natalia N., Chen, I. Min, Paez-Espino, David, Karatzas, Evangelos, Acinas, Silvia G., Ahlgren, Nathan, Attwood, Graeme, Baldrian, Petr, Berry, Timothy, Bhatnagar, Jennifer M., Bhaya, Devaki, Bidle, Kay D., Blanchard, Jeffrey L., Boyd, Eric S., Bowen, Jennifer L., Bowman, Jeff, Brawley, Susan H., Brodie, Eoin L., Brune, Andreas, Bryant, Donald A., Buchan, Alison, Cadillo-Quiroz, Hinsby, Campbell, Barbara J., Cavicchioli, Ricardo, Chuckran, Peter F., Coleman, Maureen, Crowe, Sean, Colman, Daniel R., Currie, Cameron R., Dangl, Jeff, Delherbe, Nathalie, Denef, Vincent J., Dijkstra, Paul, Distel, Daniel D., Eloe-Fadrosh, Emiley, Fisher, Kirsten, Francis, Christopher, Garoutte, Aaron, Gaudin, Amelie, Gerwick, Lena, Godoy-Vitorino, Filipa, Guerra, Peter, Guo, Jiarong, Habteselassie, Mussie Y., Hallam, Steven J., Hatzenpichler, Roland, Hentschel, Ute, Hess, Matthias, Hirsch, Ann M., Hug, Laura A., Hultman, Jenni, Hunt, Dana E., Huntemann, Marcel, Inskeep, William P., James, Timothy Y., Jansson, Janet, Johnston, Eric R., Kalyuzhnaya, Marina, Kelly, Charlene N., Kelly, Robert M., Klassen, Jonathan L., Nüsslein, Klaus, Kostka, Joel E., Lindow, Steven, Lilleskov, Erik, Lynes, Mackenzie, Mackelprang, Rachel, Martin, Francis M., Mason, Olivia U., McKay, R. Michael, McMahon, Katherine, Mead, David A., Medina, Monica, Meredith, Laura K., Mock, Thomas, Mohn, William W., Moran, Mary Ann, Murray, Alison, Neufeld, Josh D., Neumann, Rebecca, Norton, Jeanette M., Partida-Martinez, Laila P., Pietrasiak, Nicole, Pelletier, Dale, Reddy, T. B. K., Reese, Brandi Kiel, Reichart, Nicholas J., Reiss, Rebecca, Saito, Mak A., Schachtman, Daniel P., Seshadri, Rekha, Shade, Ashley, Sherman, David, Simister, Rachel, Simon, Holly, Stegen, James, Stepanauskas, Ramunas, Sullivan, Matthew, Sumner, Dawn Y., Teeling, Hanno, Thamatrakoln, Kimberlee, Treseder, Kathleen, Tringe, Susannah, Vaishampayan, Parag, Valentine, David L., Waldo, Nicholas B., Waldrop, Mark P., Walsh, David A., Ward, David M., Wilkins, Michael, Whitman, Thea, Woolet, Jamie, Woyke, Tanja, Iliopoulos, Ioannis, Konstantinidis, Konstantinos, Tiedje, James M., Pett-Ridge, Jennifer, Baker, David, Visel, Axel, Ouzounis, Christos A., Ovchinnikov, Sergey, Buluç, Aydin, Kyrpides, Nikos C., Pavlopoulos, Georgios A., Baltoumas, Fotis A., Liu, Sirui, Selvitopi, Oguz, Camargo, Antonio Pedro, Nayfach, Stephen, Azad, Ariful, Roux, Simon, Call, Lee, Ivanova, Natalia N., Chen, I. Min, Paez-Espino, David, Karatzas, Evangelos, Acinas, Silvia G., Ahlgren, Nathan, Attwood, Graeme, Baldrian, Petr, Berry, Timothy, Bhatnagar, Jennifer M., Bhaya, Devaki, Bidle, Kay D., Blanchard, Jeffrey L., Boyd, Eric S., Bowen, Jennifer L., Bowman, Jeff, Brawley, Susan H., Brodie, Eoin L., Brune, Andreas, Bryant, Donald A., Buchan, Alison, Cadillo-Quiroz, Hinsby, Campbell, Barbara J., Cavicchioli, Ricardo, Chuckran, Peter F., Coleman, Maureen, Crowe, Sean, Colman, Daniel R., Currie, Cameron R., Dangl, Jeff, Delherbe, Nathalie, Denef, Vincent J., Dijkstra, Paul, Distel, Daniel D., Eloe-Fadrosh, Emiley, Fisher, Kirsten, Francis, Christopher, Garoutte, Aaron, Gaudin, Amelie, Gerwick, Lena, Godoy-Vitorino, Filipa, Guerra, Peter, Guo, Jiarong, Habteselassie, Mussie Y., Hallam, Steven J., Hatzenpichler, Roland, Hentschel, Ute, Hess, Matthias, Hirsch, Ann M., Hug, Laura A., Hultman, Jenni, Hunt, Dana E., Huntemann, Marcel, Inskeep, William P., James, Timothy Y., Jansson, Janet, Johnston, Eric R., Kalyuzhnaya, Marina, Kelly, Charlene N., Kelly, Robert M., Klassen, Jonathan L., Nüsslein, Klaus, Kostka, Joel E., Lindow, Steven, Lilleskov, Erik, Lynes, Mackenzie, Mackelprang, Rachel, Martin, Francis M., Mason, Olivia U., McKay, R. Michael, McMahon, Katherine, Mead, David A., Medina, Monica, Meredith, Laura K., Mock, Thomas, Mohn, William W., Moran, Mary Ann, Murray, Alison, Neufeld, Josh D., Neumann, Rebecca, Norton, Jeanette M., Partida-Martinez, Laila P., Pietrasiak, Nicole, Pelletier, Dale, Reddy, T. B. K., Reese, Brandi Kiel, Reichart, Nicholas J., Reiss, Rebecca, Saito, Mak A., Schachtman, Daniel P., Seshadri, Rekha, Shade, Ashley, Sherman, David, Simister, Rachel, Simon, Holly, Stegen, James, Stepanauskas, Ramunas, Sullivan, Matthew, Sumner, Dawn Y., Teeling, Hanno, Thamatrakoln, Kimberlee, Treseder, Kathleen, Tringe, Susannah, Vaishampayan, Parag, Valentine, David L., Waldo, Nicholas B., Waldrop, Mark P., Walsh, David A., Ward, David M., Wilkins, Michael, Whitman, Thea, Woolet, Jamie, Woyke, Tanja, Iliopoulos, Ioannis, Konstantinidis, Konstantinos, Tiedje, James M., Pett-Ridge, Jennifer, Baker, David, Visel, Axel, Ouzounis, Christos A., Ovchinnikov, Sergey, Buluç, Aydin, and Kyrpides, Nikos C.
- Abstract
Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities1,2. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database3. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical and gene neighbourhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter.
- Published
- 2023
- Full Text
- View/download PDF
50. Unraveling the functional dark matter through global metagenomics
- Author
-
Agencia Estatal de Investigación (España), Pavlopoulos, Georgios A., Baltoumas, Fotis A., Liu, Sirui, Selvitopi, Oguz, Camargo, Antonio Pedro, Nayfach, Stephen, Azad, Ariful, Roux, Simon, Call, Lee, Ivanova, Natalia N., Chen, I. Min, Páez-Espino, A. David, Karatzas, Evangelos, Novel Metagenome Protein Families Consortium, Iliopoulos, Ioannis, Konstantinidis, Konstantinos T., Tiedje, James M., Pett-Ridge, Jennifer, Baker, David, Visel, Axel, Ouzounis, Christos, Ovchinnikov, Sergey, Buluç, Aydin, Kyrpides, Nikos C., Acinas, Silvia G., Agencia Estatal de Investigación (España), Pavlopoulos, Georgios A., Baltoumas, Fotis A., Liu, Sirui, Selvitopi, Oguz, Camargo, Antonio Pedro, Nayfach, Stephen, Azad, Ariful, Roux, Simon, Call, Lee, Ivanova, Natalia N., Chen, I. Min, Páez-Espino, A. David, Karatzas, Evangelos, Novel Metagenome Protein Families Consortium, Iliopoulos, Ioannis, Konstantinidis, Konstantinos T., Tiedje, James M., Pett-Ridge, Jennifer, Baker, David, Visel, Axel, Ouzounis, Christos, Ovchinnikov, Sergey, Buluç, Aydin, Kyrpides, Nikos C., and Acinas, Silvia G.
- Abstract
Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities1,2. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database3. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical and gene neighbourhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter
- Published
- 2023
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.