7 results on '"Abuga KM"'
Search Results
2. Biology of Anemia: A Public Health Perspective.
- Author
-
Brittenham GM, Moir-Meyer G, Abuga KM, Datta-Mitra A, Cerami C, Green R, Pasricha SR, and Atkinson SH
- Subjects
- Humans, Public Health, Iron, Inflammation complications, Biology, Prevalence, Anemia epidemiology, Anemia etiology, Anemia, Iron-Deficiency, Iron Deficiencies
- Abstract
Our goal is to present recent progress in understanding the biological mechanisms underlying anemia from a public health perspective. We describe important advances in understanding common causes of anemia and their interactions, including iron deficiency (ID), lack of other micronutrients, infection, inflammation, and genetic conditions. ID develops if the iron circulating in the blood cannot provide the amounts required for red blood cell production and tissue needs. ID anemia develops as iron-limited red blood cell production fails to maintain the hemoglobin concentration above the threshold used to define anemia. Globally, absolute ID (absent or reduced body iron stores that do not meet the need for iron of an individual but may respond to iron supplementation) contributes to only a limited proportion of anemia. Functional ID (adequate or increased iron stores that cannot meet the need for iron because of the effects of infection or inflammation and does not respond to iron supplementation) is frequently responsible for anemia in low- and middle-income countries. Absolute and functional ID may coexist. We highlight continued improvement in understanding the roles of infections and inflammation in causing a large proportion of anemia. Deficiencies of nutrients other than iron are less common but important in some settings. The importance of genetic conditions as causes of anemia depends upon the specific inherited red blood cell abnormalities and their prevalence in the settings examined. From a public health perspective, each setting has a distinctive composition of components underlying the common causes of anemia. We emphasize the coincidence between regions with a high prevalence of anemia attributed to ID (both absolute and functional), those with endemic infections, and those with widespread genetic conditions affecting red blood cells, especially in sub-Saharan Africa and regions in Asia and Oceania., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
3. Severe anaemia, iron deficiency, and susceptibility to invasive bacterial infections.
- Author
-
Abuga KM, Nairz M, MacLennan CA, and Atkinson SH
- Abstract
Severe anaemia and invasive bacterial infections remain important causes of hospitalization and death among young African children. The emergence and spread of antimicrobial resistance demand better understanding of bacteraemia risk factors to inform prevention strategies. Epidemiological studies have reported an association between severe anaemia and bacteraemia. In this review, we explore evidence that severe anaemia is associated with increased risk of invasive bacterial infections in young children. We describe mechanisms of iron dysregulation in severe anaemia that might contribute to increased risk and pathogenesis of invasive bacteria, recent advances in knowledge of how iron deficiency and severe anaemia impair immune responses to bacterial infections and vaccines, and the gaps in our understanding of mechanisms underlying severe anaemia, iron deficiency, and the risk of invasive bacterial infections., Competing Interests: No competing interests were disclosed., (Copyright: © 2023 Abuga KM et al.)
- Published
- 2023
- Full Text
- View/download PDF
4. Hepcidin regulation in Kenyan children with severe malaria and non-typhoidal Salmonella bacteremia.
- Author
-
Abuga KM, Muriuki JM, Uyoga SM, Mwai K, Makale J, Mogire RM, Macharia AW, Mohammed S, Muthumbi E, Mwarumba S, Mturi N, Bejon P, Scott JAG, Nairz M, Williams TN, and Atkinson SH
- Subjects
- Child, Ferritins, Hepcidins, Humans, Iron, Kenya epidemiology, Salmonella, Anemia complications, Bacteremia complications, Bacteremia microbiology, Malaria complications, Malaria, Falciparum complications
- Abstract
Malaria and invasive non-typhoidal Salmonella (NTS) are life-threatening infections that often co-exist in African children. The iron-regulatory hormone hepcidin is highly upregulated during malaria and controls the availability of iron, a critical nutrient for bacterial growth. We investigated the relationship between Plasmodium falciparum malaria and NTS bacteremia in all pediatric admissions aged <5 years between August 1998 and October 2019 (n=75,034). We then assayed hepcidin and measures of iron status in five groups: (1) children with concomitant severe malarial anemia (SMA) and NTS (SMA+NTS, n=16); and in matched children with (2) SMA (n=33); (3) NTS (n=33); (4) cerebral malaria (CM, n=34); and (5) community-based children. SMA and severe anemia without malaria were associated with a 2-fold or more increased risk of NTS bacteremia, while other malaria phenotypes were not associated with increased NTS risk. Children with SMA had lower hepcidin/ferritin ratios (0.10; interquartile range [IQR]: 0.03-0.19) than those with CM (0.24; IQR: 0.14-0.69; P=0.006) or asymptomatic malaria (0.19; IQR: 0.09-0.46; P=0.01) indicating suppressed hepcidin levels. Children with SMA+NTS had lower hepcidin levels (9.3 ng/mL; IQR: 4.7-49.8) and hepcidin/ferritin ratios (0.03; IQR: 0.01-0.22) than those with NTS alone (105.8 ng/mL; IQR: 17.3-233.3; P=0.02 and 0.31; IQR: 0.06-0.66; P=0.007, respectively). Since hepcidin degrades ferroportin on the Salmonella-containing vacuole, we hypothesize that reduced hepcidin in children with SMA might contribute to NTS growth by modulating iron availability for bacterial growth. Further studies are needed to understand how the hepcidin-ferroportin axis might mediate susceptibility to NTS in severely anemic children.
- Published
- 2022
- Full Text
- View/download PDF
5. Immune responses to malaria pre-erythrocytic stages: Implications for vaccine development.
- Author
-
Abuga KM, Jones-Warner W, and Hafalla JCR
- Subjects
- Africa, Animals, Antibodies, Protozoan, Humans, Immunity, Immunity, Cellular, Life Cycle Stages immunology, Liver immunology, Skin immunology, Erythrocytes parasitology, Malaria immunology, Malaria Vaccines immunology, Sporozoites immunology
- Abstract
Radiation-attenuated sporozoites induce sterilizing immunity and remain the 'gold standard' for malaria vaccine development. Despite practical challenges in translating these whole sporozoite vaccines to large-scale intervention programmes, they have provided an excellent platform to dissect the immune responses to malaria pre-erythrocytic (PE) stages, comprising both sporozoites and exoerythrocytic forms. Investigations in rodent models have provided insights that led to the clinical translation of various vaccine candidates-including RTS,S/AS01, the most advanced candidate currently in a trial implementation programme in three African countries. With advances in immunology, transcriptomics and proteomics, and application of lessons from past failures, an effective, long-lasting and wide-scale malaria PE vaccine remains feasible. This review underscores the progress in PE vaccine development, focusing on our understanding of host-parasite immunological crosstalk in the tissue environments of the skin and the liver. We highlight possible gaps in the current knowledge of PE immunity that can impact future malaria vaccine development efforts., (© 2020 The Authors. Parasite Immunology published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
6. How Severe Anaemia Might Influence the Risk of Invasive Bacterial Infections in African Children.
- Author
-
Abuga KM, Muriuki JM, Williams TN, and Atkinson SH
- Subjects
- Africa, Child, Female, Humans, Male, Risk Factors, Severity of Illness Index, Anemia, Iron-Deficiency complications, Anemia, Iron-Deficiency metabolism, Anemia, Iron-Deficiency pathology, Bacterial Infections etiology, Bacterial Infections metabolism, Bacterial Infections pathology, Hepcidins metabolism, Iron metabolism
- Abstract
Severe anaemia and invasive bacterial infections are common causes of childhood sickness and death in sub-Saharan Africa. Accumulating evidence suggests that severely anaemic African children may have a higher risk of invasive bacterial infections. However, the mechanisms underlying this association remain poorly described. Severe anaemia is characterized by increased haemolysis, erythropoietic drive, gut permeability, and disruption of immune regulatory systems. These pathways are associated with dysregulation of iron homeostasis, including the downregulation of the hepatic hormone hepcidin. Increased haemolysis and low hepcidin levels potentially increase plasma, tissue and intracellular iron levels. Pathogenic bacteria require iron and/or haem to proliferate and have evolved numerous strategies to acquire labile and protein-bound iron/haem. In this review, we discuss how severe anaemia may mediate the risk of invasive bacterial infections through dysregulation of hepcidin and/or iron homeostasis, and potential studies that could be conducted to test this hypothesis.
- Published
- 2020
- Full Text
- View/download PDF
7. Interferon-gamma polymorphisms and risk of iron deficiency and anaemia in Gambian children.
- Author
-
Abuga KM, Rockett KA, Muriuki JM, Koch O, Nairz M, Sirugo G, Bejon P, Kwiatkowski DP, Prentice AM, and Atkinson SH
- Abstract
Background : Anaemia is a major public health concern especially in African children living in malaria-endemic regions. Interferon-gamma (IFN-γ) is elevated during malaria infection and is thought to influence erythropoiesis and iron status. Genetic variants in the IFN-γ gene (IFNG ) are associated with increased IFN-γ production. We investigated putative functional single nucleotide polymorphisms (SNPs) and haplotypes of IFNG in relation to nutritional iron status and anaemia in Gambian children over a malaria season. Methods: We used previously available data from Gambian family trios to determine informative SNPs and then used the Agena Bioscience MassArray platform to type five SNPs from the IFNG gene in a cohort of 780 Gambian children aged 2-6 years. We also measured haemoglobin and biomarkers of iron status and inflammation at the start and end of a malaria season. Results: We identified five IFNG haplotype-tagging SNPs ( IFNG -1616 [rs2069705], IFNG +874 [rs2430561], IFNG +2200 [rs1861493], IFNG +3234 [rs2069718] and IFNG +5612 [rs2069728]). The IFNG +2200C [rs1861493] allele was associated with reduced haemoglobin concentrations (adjusted β -0.44 [95% CI -0.75, -0.12]; Bonferroni adjusted P = 0.03) and a trend towards iron deficiency compared to wild-type at the end of the malaria season in multivariable models adjusted for potential confounders. A haplotype uniquely identified by IFNG +2200C was similarly associated with reduced haemoglobin levels and trends towards iron deficiency, anaemia and iron deficiency anaemia at the end of the malaria season in models adjusted for age, sex, village, inflammation and malaria parasitaemia. Conclusion: We found limited statistical evidence linking IFNG polymorphisms with a risk of developing iron deficiency and anaemia in Gambian children. More definitive studies are needed to investigate the effects of genetically influenced IFN-γ levels on the risk of iron deficiency and anaemia in children living in malaria-endemic areas., Competing Interests: No competing interests were disclosed., (Copyright: © 2020 Abuga KM et al.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.