14 results on '"Abi Ghanem, Maroun"'
Search Results
2. Temperature-controlled spatiotemporally modulated phononic crystal for achieving nonreciprocal acoustic wave propagation
- Author
-
Palacios, Justin, primary, Calderin, Lazaro, additional, Chon, Allan, additional, Frankel, Ian, additional, Alqasimi, Jihad, additional, Allein, Florian, additional, Gorelik, Rachel, additional, Lata, Trevor, additional, Curradi, Richard, additional, Lambert-Milak, Gabrielle, additional, Oke, Anuja, additional, Smith, Neale, additional, Abi Ghanem, Maroun, additional, Lucas, Pierre, additional, Boechler, Nicholas, additional, and Deymier, Pierre, additional
- Published
- 2022
- Full Text
- View/download PDF
3. Designing plant-based phononic materials for the manipulation of sub-GHz acoustic waves
- Author
-
Abi Ghanem, Maroun, Raetz, Samuel, Hamant, Olivier, Dehoux, Thomas, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Le Mans Université (UM), École normale supérieure de Lyon (ENS de Lyon), Société Française d'Acoustique, and Laboratoire de Mécanique et d'Acoustique
- Subjects
[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] - Abstract
Plants present a versatile engineering platform to design sustainable and multifunctional materials due, in part, to their natural abundance, self-growing capacity, and functional diversity. While plant-based materials technology has started to gain momentum in photonics, robotics, and soft electronics, it has not yet met phononic materials design. In this work, we investigate the phononic behavior of micro-structured plant cells scaffolds composed of dehydrated plant cell walls. Using laser-generated acoustic waves, we measure the dispersion curves of sub-GHz surface and guided waves in these biocomposites, and reveal the presence of phononic band gaps due to their interaction with compressional and flexural local resonances of the cell wall structure. Moreover, we show that these locally resonant phononic features can be controlled by altering the phenotype of the plant cells. Our results suggest a significant potential for acoustic manipulation of MHz-GHz frequencies using bio-derived surfaces, which we anticipate can lead to a wide range of green ultrasonic devices with tailorable properties.
- Published
- 2022
4. Wrinkles: Wrinkles Riding Waves in Soft Layered Materials (Adv. Mater. Interfaces 1/2019)
- Author
-
Abi Ghanem, Maroun, primary, Liang, Xudong, additional, Lydon, Brittany, additional, Potocsnak, Liam, additional, Wehr, Thorsen, additional, Ghanem, Mohamed, additional, Hoang, Samantha, additional, Cai, Shengqiang, additional, and Boechler, Nicholas, additional
- Published
- 2019
- Full Text
- View/download PDF
5. Longitudinal eigenvibration of multilayer colloidal crystals and the effect of nanoscale contact bridges
- Author
-
Abi Ghanem, Maroun, primary, Khanolkar, Amey, additional, Wallen, Samuel P., additional, Helwig, Mary, additional, Hiraiwa, Morgan, additional, Maznev, Alexei A., additional, Vogel, Nicolas, additional, and Boechler, Nicholas, additional
- Published
- 2019
- Full Text
- View/download PDF
6. Wrinkles Riding Waves in Soft Layered Materials
- Author
-
Abi Ghanem, Maroun, primary, Liang, Xudong, additional, Lydon, Brittany, additional, Potocsnak, Liam, additional, Wehr, Thorsen, additional, Ghanem, Mohamed, additional, Hoang, Samantha, additional, Cai, Shengqiang, additional, and Boechler, Nicholas, additional
- Published
- 2018
- Full Text
- View/download PDF
7. Opto-acoustic microscopy reveals adhesion mechanics of single cells
- Author
-
Abi Ghanem, Maroun, primary, Dehoux, Thomas, additional, Liu, Liwang, additional, Le Saux, Guillaume, additional, Plawinski, Laurent, additional, Durrieu, Marie-Christine, additional, and Audoin, Bertrand, additional
- Published
- 2018
- Full Text
- View/download PDF
8. All-optical broadband ultrasonography of single cells
- Author
-
DEHOUX, Thomas, ABI GHANEM, Maroun, ZOUANI, Omar El-Farouk, RAMPNOUX, Jean-Michel, GUILLET, Yannick, DILHAIRE, Stefan, DURRIEU, Marie-Christine, AUDOIN, Bertrand, Institut de Mécanique et d'Ingénierie de Bordeaux (I2M), École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut National de la Recherche Agronomique (INRA), Chimie et Biologie des Membranes et des Nanoobjets (CBMN), École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Institut de Chimie du CNRS (INC)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Région Aquitaine, GIS Matériaux avancés en Aquitaine, ANR-13-BS09-0021,PicoBond,Imagerie quantitative par acoustique picoseconde de l'adhésion de cellules individuelles sur biomatériaux(2013), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Biosensors ,Cellular Imaging ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Optical Imaging ,Microscopy, Acoustic ,Humans ,Mesenchymal Stem Cells ,Acoustics ,Single-Cell Analysis ,Cells, Cultured ,Article ,Ultrasonography - Abstract
International audience; Cell mechanics play a key role in several fundamental biological processes, such as migration, proliferation, differentiation and tissue morphogenesis. In addition, many diseased conditions of the cell are correlated with altered cell mechanics, as in the case of cancer progression. For this there is much interest in methods that can map mechanical properties with a sub-cell resolution. Here, we demonstrate an inverted pulsed opto-acoustic microscope (iPOM) that operates in the 10 to 100 GHz range. These frequencies allow mapping quantitatively cell structures as thin as 10 nm and resolving the fibrillar details of cells. Using this non-invasive all-optical system, we produce high-resolution images based on mechanical properties as the contrast mechanisms, and we can observe the stiffness and adhesion of single migrating stem cells. The technique should allow transferring the diagnostic and imaging abilities of ultrasonic imaging to the single-cell scale, thus opening new avenues for cell biology and biomaterial sciences.
- Published
- 2015
9. Remote opto-acoustic probing of single-cell adhesion on metallic surfaces
- Author
-
Abi Ghanem, Maroun, primary, Dehoux, Thomas, additional, Zouani, Omar F., additional, Gadalla, Atef, additional, Durrieu, Marie-Christine, additional, and Audoin, Bertrand, additional
- Published
- 2013
- Full Text
- View/download PDF
10. Remote opto-acoustic probing of single-cell adhesion on metallic surfaces.
- Author
-
Abi Ghanem, Maroun, Dehoux, Thomas, Zouani, Omar F., Gadalla, Atef, Durrieu, Marie-Christine, and Audoin, Bertrand
- Abstract
The reflection of picosecond ultrasonic pulses from a cell-substrate interface is used to probe cell-biomaterial adhesion with a subcell resolution. We culture monocytes on top of a thin biocompatible Ti metal film, supported by a transparent sapphire substrate. Low-energy femtosecond pump laser pulses are focused at the bottom of the Ti film to a micron spot. The subsequent ultrafast thermal expansion launches a longitudinal acoustic pulse in Ti, with a broad spectrum extending up to 100 GHz. We measure the acoustic echoes reflected from the Ti-cell interface through the transient optical reflectance changes. The time-frequency analysis of the reflected acoustic pulses gives access to a map of the cell acoustic impedance Z
c and to a map of the film-cell interfacial stiffness K simultaneously. Variations in Zc across the cell are attributed to rigidity and density fluctuations within the cell, whereas variations in K are related to interfacial intermolecular forces and to the nano-architecture of the transmembrane bonds. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [ABSTRACT FROM AUTHOR]- Published
- 2014
- Full Text
- View/download PDF
11. Wrinkles Riding Waves in Soft Layered Materials.
- Author
-
Abi Ghanem, Maroun, Liang, Xudong, Lydon, Brittany, Potocsnak, Liam, Wehr, Thorsen, Ghanem, Mohamed, Hoang, Samantha, Cai, Shengqiang, and Boechler, Nicholas
- Subjects
WRINKLE patterns ,ELASTOMERS ,INERTIA (Mechanics) ,VISCOELASTICITY ,DEFORMATIONS (Mechanics) - Abstract
The formation of periodic wrinkles in soft layered materials due to mechanical instabilities is prevalent in nature and has been proposed for use in multiple applications. However, such phenomena have been explored predominantly in quasi‐static settings. Here, the dynamics of soft elastomeric blocks with stiff surface films subjected to high‐speed impact are measured, and wrinkles forming along with, and riding upon, waves propagating through the system are observed. The measurements are analyzed with large‐deformation, nonlinear visco‐hyperelastic finite element simulations coupled to an analytical wrinkling model. The comparison between the measured and simulated dynamics shows good agreement, and suggests that inertia and viscoelasticity play an important role. Here, future studies of the dynamics of surface instabilities in soft materials are encouraged, including cases involving large‐deformation, highly nonlinear morphologies. Improved understanding of dynamic wrinkle formation may have applications to areas including impact mitigation, soft electronics, and the dynamics of soft sandwich composites. The dynamic formation of periodic surface wrinkling patterns due to high speed impact is observed in stiff surface films deposited on soft elastomeric blocks. The wrinkles‐on‐waves surface profiles are analyzed using nonlinear visco‐hyperelastic finite element simulations coupled to an analytical wrinkling model. Effects of inertia and viscoelasticity on the dynamic formation of mechanical instabilities in soft materials are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
12. Microscope opto-acoustique utilisant la technique d'acoustique picoseconde pour l'échographie cellulaire
- Author
-
Abi Ghanem, Maroun, Audoin, Bertrand, Dehoux, Thomas, Laugier, Pascal, Nassoy, Pierre, Durrieu, Marie-Christine, Fournier, Danièle, Bossy, Emmanuel, Glorieux, Christ, Bertrand Audoin, Thomas Dehoux, Danièle Fournier [Président], Emmanuel Bossy [Rapporteur], Christ Glorieux [Rapporteur], Pascal Laugier, Pierre Nassoy, Marie-Christine Durrieu, Institut de Mécanique et d'Ingénierie de Bordeaux (I2M), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, and STAR, ABES
- Subjects
Mécanique cellulaire ,Imagerie ,Cell-mimicking objects ,Acoustique picoseconde ,Adhésion cellulaire ,Objets mous biomimétiques ,Cell mechanics ,Picosecond ultrasonics ,[PHYS.MECA]Physics [physics]/Mechanics [physics] ,[PHYS.MECA] Physics [physics]/Mechanics [physics] ,Cellular adhesion ,Imaging - Abstract
Adhesion and mechanical properties of cells are key players in several cellular functions and areinvolved in the development of degenerative diseases. To characterize these quantities, we developedin this work an opto-acoustic microscope for the non-invasive imaging of the mechanics of individualcells with a sub-cell resolution. This microscope uses the Picosecond Ultrasonics (PU) technique thatallows optical generation and detection of acoustic waves with a large bandwidth up to 1 THz. In orderto reproduce the mechanical behaviour of cells at acoustic frequencies greater than 10 GHz, a studyof cell-mimicking micro-objects is first considered. The rigidity, viscosity and thickness of these microlayeredstructures are characterized. In the second part of this manuscript, the PU technique isapplied for imaging the contact between a simple animal cell and a biomaterial, as well as the acousticimpedance of this cell. An essential tool for analysing the acoustic signal is developed. In the thirdpart, the opto-acoustic microscope operating between 10 and 100 GHz is finally presented. It is basedon an asynchronous pump-probe setup that allows producing acoustic images within a short time (4pixels/min) and offering an axial resolution of about 10 nm. This is similar to cell ultrasonography. Thestudy of the adhesion and of the mechanical properties of different cell types at different stages of cellmaturation is then tackled. The topographic images of thin cell regions (< 50 nm) are also analysed.The microscope implemented during this thesis should offer the possibility of exploring new avenuesin the field of cellular biology., L’adhésion et les propriétés mécaniques des cellules jouent un rôle crucial dans le fonctionnementcellulaire ainsi que dans l’apparition de maladies dégénératives. Pour mesurer ces quantités, nousavons développé dans ce travail un microscope opto-acoustique pour l’imagerie non-invasive de lamécanique de cellules individuelles avec une résolution sub-cellulaire. Ce microscope utilise latechnique d’acoustique picoseconde qui permet de générer et détecter optiquement des ondesacoustiques avec une large bande s’étendant jusqu’à 1 THz. Dans le but de reproduire lecomportement mécanique des cellules à des fréquences acoustiques supérieures à 10 GHz, uneétude sur des objets mous biomimétiques est menée dans une première partie. Les rigidité, viscositéet épaisseur de ces systèmes multicouches micrométriques sont caractérisées. Dans la deuxièmepartie de ce manuscrit, la technique d’acoustique picoseconde est employée pour imager le contactentre une cellule animale modèle et un biomatériau, ainsi que l’impédance acoustique de cette cellule.Un outil d’analyse nécessaire pour le traitement du signal acoustique est mis en place. Enfin, unmicroscope opto-acoustique opérationnel entre 10 et 100 GHz est présenté dans la dernière partie. Ilest basé sur un dispositif pompe-sonde asynchrone qui permet de produire des images acoustiquesen un temps court (4 pixels/min) avec une résolution axiale de l’ordre d’une dizaine de nm. Cetteapproche est comparable à une échographie mais à l’échelle cellulaire. L’étude de l’adhésion et despropriétés mécaniques de plusieurs types de cellules à différents stades de maturation est abordée.Des images topographiques des zones fines (< 50 nm) d’une cellule sont également analysées. Lemicroscope développé durant cette thèse offrira la possibilité d’explorer de nouvelles pistes derecherche dans les domaines de la biologie cellulaire et des biotechnologies.
13. Dependence of the kinetic energy absorption capacity of bistable mechanical metamaterials on impactor mass and velocity
- Author
-
Fancher, Ryan, Frankel, Ian, Chin, Kyle, Ghanem, Maroun Abi, Macnider, Brianna, Shannahan, Logan S., Berry, James F., Fermen-Coker, Muge, Boydston, Andrew J., Boechler, Nicholas, and Abi Ghanem, Maroun
- Subjects
[SPI] Engineering Sciences [physics] ,FOS: Physical sciences ,Physics - Applied Physics ,Applied Physics (physics.app-ph) ,Pattern Formation and Solitons (nlin.PS) ,Nonlinear Sciences - Pattern Formation and Solitons - Abstract
Using an alternative mechanism to dissipation or scattering, bistable structures and mechanical metamaterials have shown promise for mitigating the detrimental effects of impact by reversibly locking energy into strained material. Herein, we extend prior works on impact absorption via bistable metamaterials to computationally explore the dependence of kinetic energy transmission on the velocity and mass of the impactor, with strain rates exceeding $10^2$ s$^{-1}$. We observe a large dependence on both impactor parameters, ranging from significantly better to worse performance than a comparative linear material. We then correlate the variability in performance to solitary wave formation in the system and give analytical estimates of idealized energy absorption capacity under dynamic loading. In addition, we find a significant dependence on damping accompanied by a qualitative difference in solitary wave propagation within the system. The complex dynamics revealed in this study offer potential future guidance for the application of bistable metamaterials to applications including human and engineered system shock and impact protection devices.
- Published
- 2023
- Full Text
- View/download PDF
14. Spatial Laplace transform for complex wavenumber recovery and its application to the analysis of attenuation in acoustic systems
- Author
-
Jean-Philippe Groby, Amey Khanolkar, Nicholas Boechler, Alan Geslain, Claire Prada, P. Leclaire, Aroune Duclos, Samuel Raetz, M. Abi Ghanem, Morgan Hiraiwa, Samuel P. Wallen, Jérôme Laurent, Département de Recherche en Ingénierie des Véhicules pour l'Environnement [Nevers] (DRIVE), Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Department of Mechanical Engineering [University of Washington], University of Washington [Seattle], Institut de Mécanique et d'Ingénierie de Bordeaux (I2M), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), University of California [San Diego] (UC San Diego), University of California (UC), Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut Langevin - Ondes et Images (UMR7587) (IL), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Département de Recherche en Ingéniérie des Véhicules pour l'Environnement (DRIVE), Université de Bourgogne (UB), Abi Ghanem, Maroun, Laboratoire d'acoustique de l'université du Mans ( LAUM ), Le Mans Université ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, United States, affiliation inconnue, The Nobel Institute for Neurophysiology, Karolinska Institutet [Stockholm], ESPCI ParisTech, Département de Recherche en Ingéniérie des Véhicules pour l'Environnement ( DRIVE ), Université de Bourgogne ( UB ), LMAc project DECIMAP, LMAc project PAVNat, U.S. National Science Foundation CMMI-1333858, U.S. Army Research Office W911NF-15-1-0030, University of Washington Royalty Research Foundation, National Science Foundation DGE-1256082, ANR-13-BS09-0003,Metaudible,Conception de Metamatériaux absorbants le son dans la gamme audible ( 2013 ), LABEX WIFI (Laboratory of Excellence within the French Program 'Investments for the Future') under references ANR-10-LABX-24 and ANR-10-IDEX-0001-02 PSL*,LABEX WIFI (Laboratory of Excellence within the French Program 'Investments for the Future') under references ANR-10-LABX-24 and ANR-10-IDEX-0001-02 PSL, Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM), Sorbonne Université (SU)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Paris (UP)-Centre National de la Recherche Scientifique (CNRS), ANR-13-BS09-0003,Metaudible,Conception de Metamatériaux absorbants le son dans la gamme audible(2013), and ANR-10-LABX-0024,WIFI,Institut Langevin : Ondes et Images, du Fondamental à l'Innovation(2010)
- Subjects
Wave propagation ,[SPI] Engineering Sciences [physics] ,Acoustics ,Generation ,General Physics and Astronomy ,Tortuosity ,01 natural sciences ,Crystals ,[PHYS] Physics [physics] ,Scattering ,[SPI]Engineering Sciences [physics] ,0103 physical sciences ,Wavenumber ,Acoustic wave equation ,Damping Ratio ,010306 general physics ,Dispersion (water waves) ,Propagation ,010301 acoustics ,Physics ,[PHYS]Physics [physics] ,[ PHYS ] Physics [physics] ,Laplace transform ,Attenuation ,Velocity Lamb Modes ,Acoustic wave ,Dispersion ,Saturated Porous-Media ,Parameters ,Acoustic attenuation - Abstract
International audience; We present a method for the recovery of complex wavenumber information via spatial Laplace transforms of spatiotemporal wave propagation measurements. The method aids in the analysis of acoustic attenuation phenomena and is applied in three different scenarios: (i) Lamb-like modes in air-saturated porous materials in the low kHz regime, where the method enables the recovery of viscoelastic parameters; (ii) Lamb modes in a Duralumin plate in the MHz regime, where the method demonstrates the effect of leakage on the splitting of the forward S-1 and backward S-2 modes around the Zero-Group Velocity point; and (iii) surface acoustic waves in a two-dimensional microscale granular crystal adhered to a substrate near 100 MHz, where the method reveals the complex wave-numbers for an out-of-plane translational and two in-plane translational-rotational resonances. This method provides physical insight into each system and serves as a unique tool for analyzing spatiotemporal measurements of propagating waves. Published by AIP Publishing.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.