Karatzas, Nicolaos, Abdelnour, Patrik, Aaron Hiro Corban, Jason Philip, Zhao, Kevin Y., Veilleux, Louis-Nicolas, Bergeron, Stephane G., Fevens, Thomas, Rivaz, Hassan, Babouras, Athanasios, and Martineau, Paul A.
Knee kinematics during a drop vertical jump, measured by the Kinect V2 (Microsoft, Redmond, WA, USA), have been shown to be associated with an increased risk of non-contact anterior cruciate ligament injury. The accuracy and reliability of the Microsoft Kinect V2 has yet to be assessed specifically for tracking the coronal and sagittal knee angles of the drop vertical jump. Eleven participants performed three drop vertical jumps that were recorded using both the Kinect V2 and a gold standard motion analysis system (Vicon, Los Angeles, CA, USA). The initial coronal, peak coronal, and peak sagittal angles of the left and right knees were measured by both systems simultaneously. Analysis of the data obtained by the Kinect V2 was performed by our software. The differences in the mean knee angles measured by the Kinect V2 and the Vicon system were non-significant for all parameters except for the peak sagittal angle of the right leg with a difference of 7.74 degrees and a p-value of 0.008. There was excellent agreement between the Kinect V2 and the Vicon system, with intraclass correlation coefficients consistently over 0.75 for all knee angles measured. Visual analysis revealed a moderate frame-to-frame variability for coronal angles measured by the Kinect V2. The Kinect V2 can be used to capture knee coronal and sagittal angles with sufficient accuracy during a drop vertical jump, suggesting that a Kinect-based portable motion analysis system is suitable to screen individuals for the risk of non-contact anterior cruciate ligament injury. [ABSTRACT FROM AUTHOR]