This work is trying to introduce a fractional order floated pole controller as a fast and robust approach. We designed a robust variable structure control that yields a continuous and constrained control signal, also a fast response in the presence of model uncertainties and external disturbances. In the proposed controller, we employed the pole placement algorithm, then by designing proper polynomials gave it robust property, then due to a simple optimization routine, we make it fast and faster within the stability region. Finally, to evaluate the proposed method, numerical examples in different situations of the presence of noise, disturbance, and model uncertainties, also comparative results are presented. This paper proposed an accurate, fast, and robust controller. This can improve the performance of the perturbed functional systems used in the industrial fields. It is proposed to spread the benefit of fractional calculus in the control of complex systems in practical situations. [ABSTRACT FROM AUTHOR]