Due to local groundwater seeping and freezing in layers that accumulate over each other and create large ice clusters on the ground surface, specific conditions of energy and mass transfer are created in the atmosphere–soil–lithosphere system. In winter, the vertical temperature distribution curve is significantly deformed due to heat emission from the water layer above the ice cover during its freezing, and a thermocline is thus formed. Deformation of the temperature curve is gradually decreasing in size downward the profile and decays at the interface of frozen and thaw rocks. Values and numbers of temperature deviations from a 'normal' value depend on heat reserves of aufeis water and the number of water seeps/discharges at a given location. The production of the thermocline alters freezing conditions for underlying ground layers and changes the mechanism of ice saturation, thus leading to formation of two-layer ice-ground complexes (IGC). IGCs are drastically different from cryogenic formations in the neighbouring sections of the river valley. Based on genetic characteristics and the ratios of components in the surface and subsurface layers, seven types of aufeis IGCs are distinguished: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressure-injection, and fissure-vein. Annual processes of surface and subsurface icing and ice ablation are accompanied by highly hazardous geodynamic phenomena, such as winter flooding, layered water freezing, soil heaving/pingo, thermokarst and thermal erosion. Combined, these processes lead to rapid and often incidental reconfigurations of the surface and subsurface runoff channels, abrupt uplifting and subsiding of the ground surface, decompaction and 'shaking-up' of seasonally freezing/thawing rocks, thereby producing exceptionally unfavourable conditions for construction and operation of engineering structures.Formation and development of river networks are heavily influenced by aufeis deposits and processes taking place at the aufeis surfaces, especially in areas of discontinuous and continuous permafrost where an average thickness of the ice cover on rivers ranges from 1.0 to 2.5 m, and the major part of the ice cover is accumulated layer by layer due to freezing of discharged groundwater. In the permafrost zone, the intensity of cryogenic channelling is clearly cyclical, and the cycles depend on accumulation of aufeis ice above the river level during the autumn low-water period. Five stages of cryogenic channelling are distinguished: I – pre-glacial development, II – transgression, III – stabilization, IV – regression, and V – post-glacial development. Each stage is characterised by a specific glaciohydrological regime of runoff channels and their specific shapes, sizes and spatial patterns.The channel network is subject to the maximum transformation in aufeis development stages III and IV, when the transit flow channel is split into several shallow-water branches, producing a complicated plan pattern of the terrain. In the mature aufeis glades, there are sites undergoing various development stages, which gives evidence that aufeis channelling is variable in a wide range in both space and time. With respect to sizes of aufeis glades, river flow capacities and geological, geomorphological, cryo-hydrogeological conditions, aufeis patterns of the channel network are classified into five types as follows: fan-shaped, cone-shaped, treelike, reticular, and longitudinal-insular types. The aufeis channel network is a reliable indicator of intensity of both recent and ancient geodynamic processes in the cryolithozone.In Siberia and the Far East, the aufeis deposits are much larger, more numerous and more important in terms of morpholithology in comparison with the 'classical' (sedimentary metamorphic) icing structures. The more contrasting is the terrain, the more active are neotectonic movements, the lower is the mean annual air temperature, and the higher is the annual percentage of the territory covered by aufeis ice. The aufeis ratio of the permafrost zone is determined from parameters of over 10000 ice fields and amounts to 0.66 % (50000 km2). In mountains and tablelands, the total area of aufeis deposits amounts to 40000 km2, and the number of ice clusters (0.77 km2 in average) exceeds 60000. On the rivers up to 500 km long, the aufeis size depends on the stream rank. In all the natural zones, the majority of gigantic aufeis spots produced by groundwater are located in river valleys of ranks 3 and 4. The square area of aufeis deposits of mixed feed, i.e. produced by river water and groundwater, which occupy the entire river channel, yet do not go beyond the floodplain, amounts to 68000 km2, i.e. by a factor of 1.7 larger than the area of all the aufeis deposits (taryns). The cumulative channel-forming effect of aufeis phenomena is expressed by an increment in the channel network relative to characteristics of the river segments located upstream and downstream of the aufeis glade. This indicator is well correlated with the aufeis ratios of the river basins, morphostructural and cryo-hydrometeorological conditions of the territory under study. The incremental length of the channel network, ρn per one groundwater aufeis deposit is increased, in average, from 3.5 km in mountains in the southern regions of East Siberia to 23 km in the Verkhoyansk-Kolyma mountain system and Chukotka. The value of ρn is decreased to 2.2 km in the plains and intermountain depressions of the Baikal rift system where the average dimensions of the ice fields are smaller. An average incremental length of the channel network per one large groundwater aufeis deposit amounts to 12.2 km, and the total incremental length in continuous and discontinuous permafrost areas (F=7.6 mln km2) is estimated at 690000 km.Combined impacts of aufeis and icing processes on underlying rocks and the channel network is a specific (aufeis) form of cryogenic morpholithogenesis that is typical of regions with inclement climate and harsh environment. A more detailed research of these processes is required, including large-scale aerospace surveys, monitoring and observations on special aufeis polygons.