Brhian, Alysson, Ridenti, Marco A., Roberto, Marisa, de Abreu, Alessandro J., Abalde Guede, José R., and de Campos, Elson
In this paper, we applied a variety of statistical methods to study gravity waves in the troposphere and lower stratosphere in the Brazilian sector, using a large database from Instituto de Controle do Espaço Aéreo (ICEA) of radiosonde measurements carried out in 2014 at 32 locations in the Brazilian territory totaling 49,652 wind and temperature profiles. The average wind profiles were computed and classified by means of a hierarchical cluster analysis. The kinetic and potential energy densities of gravity waves were determined using a detrending technique based on the Least Squares Method and the Fast Fourier Transform. By analyzing the energy density time series it was found that tropospheric average values are consistently larger in the months of winter, late autumn and early spring. Stratospheric average values of variability and kinetic energy density are also consistently larger in this period. A systematic search for quasi monochromatic waves was carried out and their main characteristics such as horizontal/vertical wavelengths and velocities were determined both in the troposphere and lower stratosphere. A correlation analysis between the troposphere and the lower stratosphere based on the measured parameters was used to investigate the wave coupling between the two layers, and no significant correlation was found. Finally, a spatial correlation analysis between energy densities measured at different aerodromes in the same atmospheric layer was carried out, showing that energy densities are spatially correlated for distances less than 3,000–4,000 km. Plain Language Summary: Like waves in the ocean that can be easily seen by any observer in the beach, the atmosphere is also permeated by waves of similar nature, called Gravity Waves (GWs). These waves transport energy through the atmosphere, eventually breaking, reflecting or dissipating at some point. In this work we investigated the characteristics of these waves using weather data retrieved by weather balloons released from several locations in the Brazilian territory in 2014. By analyzing the measurements, we quantified parameters related to GWs, such as the kinetic and potential energy densities. We also investigated GWs that have well defined frequencies, called monochromatic waves, and determined their wavelengths, phases, amplitudes and phase velocities. We did not find correlations between the wave energies in the troposphere and the low stratosphere, which is an evidence of weak coupling between both layers. This result suggests that GWs characteristics are substantially modified in the perturbed, turbulent and windy region between the troposphere and low stratosphere. Moreover, we also identified the prevailing behavior of the winds in each of the studied locations. Key Points: A comprehensive survey on gravity waves using radiosonde data from 32 locations in the Brazilian territory totaling 49,652 profilesThe energy densities of gravity waves are spatially correlated within a region of approximately 3,000 km of radiusIt was found that gravity waves propagating in the troposphere and low stratosphere are uncorrelated in the studied locations [ABSTRACT FROM AUTHOR]