1. Rozpoznávácí sítě založené na konečných stavových převodnících pro dopředné a zpětné dekódování v rozpoznávání řeči
- Author
-
Burget, Lukáš, AD, Ralf Schlüter, Novák,, Miroslav, Hannemann, Mirko, Burget, Lukáš, AD, Ralf Schlüter, Novák,, Miroslav, and Hannemann, Mirko
- Abstract
Pomocí matematického formalismu váhovaných konečných stavových převodníků (weighted finite state transducers WFST) může být formulována řada úloh včetně automatického rozpoznávání řeči (automatic speech recognition ASR). Dnešní ASR systémy široce využívají složených pravděpodobnostních modelů nazývaných dekódovací grafy nebo rozpoznávací sítě. Ty jsou z jednotlivých komponent konstruovány pomocí WFST operací, např. kompozice. Každá komponenta je zde zdrojem znalostí a omezuje vyhledávání nejlepší cesty ve složeném grafu v operaci zvané dekódování. Využití koherentního teoretického rámce garantuje, že výsledná struktura bude optimální podle definovaného kritéria. WFST mohou být v rámci daného polookruhu (semi-ring) optimalizovány pomocí determinizace a minimalizace. Aplikací těchto algoritmů získáme optimální strukturu pro prohledávání, optimální distribuce vah je pak získána aplikací "weight pushing" algoritmu. Cílem této práce je zdokonalit postupy a algoritmy pro konstrukci optimálních rozpoznávacích sítí. Zavádíme alternativní weight pushing algoritmus, který je vhodný pro důležitou třídu modelů -- převodníky jazykového modelu (language model transducers) a obecně pro všechny cyklické WFST a WFST se záložními (back-off) přechody. Představujeme také způsob konstrukce rozpoznávací sítě vhodné pro dekódování zpětně v čase, které prokazatelně produkuje ty samé pravděpodobnosti jako dopředná síť. K tomuto účelu jsme vyvinuli algoritmus pro exaktní reverzi back-off jazykových modelů a převodníků, které je reprezentují. Pomocí zpětných rozpoznávacích sítí optimalizujeme dekódování: ve statickém dekodéru je využíváme pro dvoustupňové dekódování (dopředné a zpětné vyhledávání). Tento přístup --- "sledovací" dekódování (tracked decoding) --- umožnuje zahrnout výsledky vyhledávání z prvního stupně do druhého stupně tak, že se sledují hypotézy obsažené v rozpoznávacím grafu (lattice) prvního stupně. Výsledkem je podstatné zrychlení dekódování, protože tato technika umožnuje, Many tasks can be formulated in the mathematical framework of weighted finite state transducers (WFST). This is also the case for automatic speech recognition (ASR). Nowadays, ASR makes extensive use of composed probabilistic models -- called decoding graphs or recognition networks. They are constructed from the individual components via WFST operations like composition. Each component is a probabilistic knowledge source that constrains the search for the best path through the composed graph -- called decoding. The usage of a coherent framework guarantees, that the resulting automata will be optimal in a well-defined sense. WFSTs can be optimized with the help of determinization and minimization in a given semi-ring. The application of these algorithms results in the optimal structure for search and the optimal distribution of weights is achieved by applying a weight pushing algorithm. The goal of this thesis is to further develop the recipes and algorithms for the construction of optimal recognition networks. We introduce an alternative weight pushing algorithm, that is suitable for an important class of models -- language model transducers, or more generally cyclic WFSTs and WFSTs with failure (back-off) transitions. We also present a recipe to construct recognition networks, which are suitable for decoding backwards in time, and which, at the same time, are guaranteed to give exactly the same probabilities as the forward recognition network. For that purpose, we develop an algorithm for exact reversal of back-off language models and their corresponding language model transducers. We apply these backward recognition networks in an optimization technique: In a static network decoder, we use it for a two-pass decoding setup (forward search and backward search). This approach is called tracked decoding and allows to incorporate the first pass decoding into the second pass decoding by tracking hypotheses from the first pass lattice. This technique results in significa