1. Extracellular Vesicles of Patients on Peritoneal Dialysis Inhibit the TGF-β- and PDGF-B-Mediated Fibrotic Processes
- Author
-
Beáta Szebeni, Apor Veres-Székely, Domonkos Pap, Péter Bokrossy, Zoltán Varga, Anikó Gaál, Judith Mihály, Éva Pállinger, István M. Takács, Csenge Pajtók, Mária Bernáth, György S. Reusz, Attila J. Szabó, and Ádám Vannay
- Subjects
extracellular vesicles ,peritoneal dialysis ,fibrosis ,mesenchymal transition ,therapy ,Cytology ,QH573-671 - Abstract
Among patients on peritoneal dialysis (PD), 50–80% will develop peritoneal fibrosis, and 0.5–4.4% will develop life-threatening encapsulating peritoneal sclerosis (EPS). Here, we investigated the role of extracellular vesicles (EVs) on the TGF-β- and PDGF-B-driven processes of peritoneal fibrosis. EVs were isolated from the peritoneal dialysis effluent (PDE) of children receiving continuous ambulatory PD. The impact of PDE-EVs on the epithelial–mesenchymal transition (EMT) and collagen production of the peritoneal mesothelial cells and fibroblasts were investigated in vitro and in vivo in the chlorhexidine digluconate (CG)-induced mice model of peritoneal fibrosis. PDE-EVs showed spherical morphology in the 100 nm size range, and their spectral features, CD63, and annexin positivity were characteristic of EVs. PDE-EVs penetrated into the peritoneal mesothelial cells and fibroblasts and reduced their PDE- or PDGF-B-induced proliferation. Furthermore, PDE-EVs inhibited the PDE- or TGF-β-induced EMT and collagen production of the investigated cell types. PDE-EVs contributed to the mesothelial layer integrity and decreased the submesothelial thickening of CG-treated mice. We demonstrated that PDE-EVs significantly inhibit the PDGF-B- or TGF-β-induced fibrotic processes in vitro and in vivo, suggesting that EVs may contribute to new therapeutic strategies to treat peritoneal fibrosis and other fibroproliferative diseases.
- Published
- 2024
- Full Text
- View/download PDF