278 results on '"A. P. Milenin"'
Search Results
2. Methods for rapid and efficient synthesis of dendrimers, a new impetus for the development of dendrimer materials science
- Author
-
Klokova, K. S., Ardabevskaia, S. N., Katarzhnova, E. Yu., Milenin, S. A., and Muzafarov, A. M.
- Published
- 2024
- Full Text
- View/download PDF
3. Mg–Ca Surgical Wires Degradation in Animal Serum
- Author
-
Lelek-Borkowska, Urszula, Wróbel, Mirosław, Marzec, Mateusz, Kustra, Piotr, and Milenin, Andrij
- Published
- 2024
- Full Text
- View/download PDF
4. Track-Like Event Analysis at the Baikal-GVD Neutrino Telescope
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Reconstructed tracks of muons produced in neutrino interactions provide the precise probe for the neutrino direction. Therefore, track-like events are a powerful tool to search for neutrino point sources. Recently, Baikal-GVD has demonstrated the first sample of low-energy neutrino candidate events extracted from the data of the season 2019 in a so-called single-cluster analysis - treating each cluster as an independent detector. In this paper, the extension of the track-like event analysis to a wider data set is discussed and the first high-energy track-like events are demonstrated. The status of multi-cluster track reconstruction and that of the event analysis are also discussed., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
5. Atmospheric muon suppression for Baikal-GVD cascade analysis
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Baikal-GVD (Gigaton Volume Detector) is a neutrino telescope installed at a depth of 1366 m in Lake Baikal. The expedition of 2023 brought the number of optical modules in the array up to 3492 (including experimental strings). These optical modules detect the Cherenkov radiation from secondary charged particles coming from the neutrino interactions. Neutrinos produce different kinds of topologically distinct light signatures. Charged current muon neutrino interactions create an elongated track in the water. Charged and neutral current interactions of other neutrino flavors yield hadronic and electromagnetic cascades. The background in the neutrino cascade channel arises mainly due to discrete stochastic energy losses produced along atmospheric muon tracks. In this paper, a developed algorithm for the cascade event selection is presented., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
- Full Text
- View/download PDF
6. Double cascade reconstruction in the Baikal-GVD neutrino telescope
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Baikal Gigaton Volume Detector is a cubic kilometer scale neutrino telescope under construction in Lake Baikal. As of July 2023, Baikal-GVD consists of 96 fully deployed strings resulting in 3456 optical modules installed. The observation of neutrinos is based on detection of Cherenkov radiation emitted by the products of neutrino interactions. In this contribution, description of the double cascade reconstruction technique as well as evaluation of precision of this algorithm is given., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
- Full Text
- View/download PDF
7. Improving the efficiency of cascade detection by the Baikal-GVD neutrino telescope
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The deployment of the Baikal-GVD deep underwater neutrino telescope is in progress now. About 3500 deep underwater photodetectors (optical modules) arranged into 12 clusters are operating in Lake Baikal. For increasing the efficiency of cascade-like neutrino event detection, the telescope deployment scheme was slightly changed. Namely, the inter-cluster distance was reduced for the newly deployed clusters and additional string of optical modules are added between the clusters. The first inter-cluster string was installed in 2022 and two such strings were installed in 2023. This paper presents a Monte Carlo estimate of the impact of these configuration changes on the cascade detection efficiency as well as technical implementation and results of in-situ tests of the inter-cluster strings., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
- Full Text
- View/download PDF
8. Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., Zvezdov, D. Y., Kosogorov, N. A., Kovalev, Y. Y., Lipunova, G. V., Plavin, A. V., Semikoz, D. V., and Troitsky, S. V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Baikal-GVD is a next generation, kilometer-scale neutrino telescope currently under construction in Lake Baikal. GVD consists of multi-megaton subarrays (clusters) and is designed for the detection of astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. The large detector volume and modular design of Baikal-GVD allows for the measurements of the astrophysical diffuse neutrino flux to be performed already at early phases of the array construction. We present here recent results of the measurements on the diffuse cosmic neutrino flux obtained with the Baikal-GVD neutrino telescope using cascade-like events., Comment: Presented at the 38th International Cosmic Ray Conference (ICRC 2023)
- Published
- 2023
- Full Text
- View/download PDF
9. Large neutrino telescope Baikal-GVD: recent status
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, 5 V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
The Baikal-GVD is a deep-underwater neutrino telescope being constructed in Lake Baikal. After the winter 2023 deployment campaign the detector consists of 3456 optical modules installed on 96 vertical strings. The status of the detector and progress in data analysis are discussed in present report. The Baikal-GVD data collected in 2018-2022 indicate the presence of cosmic neutrino flux in high-energy cascade events consistent with observations by the IceCube neutrino telescope. Analysis of track-like events results in identification of first high-energy muon neutrino candidates. These and other results from 2018-2022 data samples are reviewed in this report.
- Published
- 2023
- Full Text
- View/download PDF
10. Monitoring of optical properties of deep waters of Lake Baikal in 2021-2022
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, 5 V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, 0 R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
High Energy Physics - Phenomenology - Abstract
We present the results of the two-year (2021-2022) monitoring of absorption and scattering lengths of light with wavelength 400-620 nm within the effective volume of the deep underwater neutrino telescope Baikal-GVD, which were measured by a device Baikal-5D No.2. The Baikal-5D No.2. was installed during the 2021 winter expedition at a depth of 1180 m. The absorption and scattering lengths were measured every week in 9 spectral points. The device Baikal-5D No.2 also has the ability to measure detailed scattering and absorption spectra. The data obtained make it possible to estimate the range of changes in the absorption and scattering lengths over a sufficiently long period of time and to investigate the relationship between the processes of changes in absorption and scattering. An analysis was made of changes in absorption and scattering spectra for the period 2021-2022.
- Published
- 2023
- Full Text
- View/download PDF
11. Studies of the ambient light of deep Baikal waters with Baikal-GVD
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, 5 V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, 0 R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
High Energy Physics - Phenomenology ,Physics - Instrumentation and Detectors - Abstract
The Baikal-GVD neutrino detector is a deep-underwater neutrino telescope under construction and recently after the winter 2023 deployment it consists of 3456 optical modules attached on 96 vertical strings. This 3-dimensional array of photo-sensors allows to observe ambient light in the vicinity of the Baikal-GVD telescope that is associated mostly with water luminescence. Results on time and space variations of the luminescent activity are reviewed based on data collected in 2018-2022.
- Published
- 2023
- Full Text
- View/download PDF
12. Time Calibration of the Baikal-GVD Neutrino Telescope with Atmospheric Muons
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors ,85 - Abstract
We present a new procedure for time calibration of the Baikal-GVD neutrino telescope. The track reconstruction quality depends on accurate measurements of arrival times of Cherenkov photons. Therefore, it is crucial to achieve a high precision in time calibration. For that purpose, in addition to other calibration methods, we employ a new procedure using atmospheric muons reconstructed in a single-cluster mode. The method is based on iterative determination of effective time offsets for each optical module. This paper focuses on the results of the iterative reconstruction procedure with time offsets from the previous iteration and the verification of the method developed. The theoretical muon calibration precision is estimated to be around 1.5-1.6ns., Comment: 38th International Cosmic Ray Conference (ICRC2023)
- Published
- 2023
13. Baikal-GVD Real-Time Data Processing and Follow-Up Analysis of GCN Notices
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Baikal-GVD alert system was launched at the beginning of 2021. There are alerts for muon neutrinos (long upward-going track-like events) and all-flavour neutrinos (high-energy cascades). The system is able to get a preliminary response to external alerts with a temporal delay of about 3-10 minutes. The Baikal-GVD data processing and the results of the follow-up procedure are described. We report on the analysis of the coincidence in time and direction between the Baikal-GVD cascade GVD20211208CA with an estimated energy of 43 TeV and the announced alert IceCube211208A possibly associated with a flaring state of the blazar PKS 0735+178., Comment: 9 pages, 5 figures
- Published
- 2023
- Full Text
- View/download PDF
14. Baikal-GVD Astrophysical Neutrino Candidate near the Blazar TXS~0506+056
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., Erkenov, D. Y. Zvezdov A. K., Kosogorov, N. A., Kovalev, Y. A., Kovalev, Y. Y., Plavin, A. V., Popkov, A. V., Pushkarev, A. B., Semikoz, D. V., Sotnikova, Y. V., and Troitsky, S. V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on the observation of a rare neutrino event detected by Baikal-GVD in April 2021. The event GVD210418CA is the highest-energy cascade observed by Baikal-GVD so far from the direction below the horizon. The estimated cascade energy is $224\pm75$~TeV. The evaluated signalness parameter of GVD210418CA is 97.1\% using an assumption of the E$^{-2.46}$ spectrum of astrophysical neutrinos. The arrival direction of GVD210418CA is near the position of the well-known radio blazar TXS~0506+056, with the angular distance being within a 90\% directional uncertainty region of the Baikal-GVD measurement. The event was followed by a radio flare observed by the RATAN-600 radio telescope, further strengthening the case for the neutrino-blazar association., Comment: 9 pages, 6 figures, Contribution to the 38th International Cosmic Rays Conference (ICRC2023). arXiv admin note: text overlap with arXiv:2210.01650
- Published
- 2023
15. GaAs nano-ridge laser diodes fully fabricated in a 300 mm CMOS pilot line
- Author
-
De Koninck, Yannick, Caer, Charles, Yudistira, Didit, Baryshnikova, Marina, Sar, Huseyin, Hsieh, Ping-Yi, Patra, Saroj Kanta, Kuznetsova, Nadezda, Colucci, Davide, Milenin, Alexey, Yimam, Andualem Ali, Morthier, Geert, Van Thourhout, Dries, Verheyen, Peter, Pantouvaki, Marianna, Kunert, Bernardette, and Van Campenhout, Joris
- Subjects
Physics - Optics ,Physics - Applied Physics - Abstract
Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute, and sense the world. However, the lack of highly scalable, native CMOS-integrated light sources is one of the main factors hampering its widespread adoption. Despite significant progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxial growth of III-V materials remains the pinnacle in realizing cost-effective on-chip light sources. Here, we report the first electrically driven GaAs-based multi-quantum-well laser diodes fully fabricated on 300 mm Si wafers in a CMOS pilot manufacturing line. GaAs nano-ridge waveguides with embedded p-i-n diodes, InGaAs quantum wells and InGaP passivation layers are grown with high quality at wafer scale, leveraging selective-area epitaxy with aspect-ratio trapping. After III-V facet patterning and standard CMOS contact metallization, room-temperature continuous-wave lasing is demonstrated at wavelengths around 1020 nm in more than three hundred devices across a wafer, with threshold currents as low as 5 mA, output powers beyond 1 mW, laser linewidths down to 46 MHz, and laser operation up to 55 {\deg}C. These results illustrate the potential of the III-V/Si nano-ridge engineering concept for the monolithic integration of laser diodes in a Si photonics platform, enabling future cost-sensitive high-volume applications in optical sensing, interconnects and beyond., Comment: 40 pages with 16 figures. pdf includes supplementary information
- Published
- 2023
16. Search for directional associations between Baikal Gigaton Volume Detector neutrino-induced cascades and high-energy astrophysical sources
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bardacová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., Zvezdov, D. Y., Kosogorov, N. A., Kovalev, Y. Y., Lipunova, G. V., Plavin, A. V., Semikoz, D. V., and Troitsky, S. V.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
Baikal-GVD has recently published its first measurement of the diffuse astrophysical neutrino flux, performed using high-energy cascade-like events. We further explore the Baikal-GVD cascade dataset collected in 2018-2022, with the aim to identify possible associations between the Baikal-GVD neutrinos and known astrophysical sources. We leverage the relatively high angular resolution of the Baikal-GVD neutrino telescope (2-3 deg.), made possible by the use of liquid water as the detection medium, enabling the study of astrophysical point sources even with cascade events. We estimate the telescope's sensitivity in the cascade channel for high-energy astrophysical sources and refine our analysis prescriptions using Monte-Carlo simulations. We primarily focus on cascades with energies exceeding 100 TeV, which we employ to search for correlation with radio-bright blazars. Although the currently limited neutrino sample size provides no statistically significant effects, our analysis suggests a number of possible associations with both extragalactic and Galactic sources. Specifically, we present an analysis of an observed triplet of neutrino candidate events in the Galactic plane, focusing on its potential connection with certain Galactic sources, and discuss the coincidence of cascades with several bright and flaring blazars., Comment: 10 pages, 3 figures, accepted for publication in MNRAS
- Published
- 2023
- Full Text
- View/download PDF
17. Wafer-scale Graphene Electro-absorption Modulators Fabricated in a 300mm CMOS Platform
- Author
-
Wu, Chenghan, Brems, Steven, Yudistira, Didit, Cott, Daire, Milenin, Alexey, Vandersmissen, Kevin, Maestre, Arantxa, Centeno, Alba, Zurutuza, Amaia, Van Campenhout, Joris, Huyghebaert, Cedric, Van Thourhout, Dries, and Pantouvaki, Marianna
- Subjects
Physics - Applied Physics ,Physics - Optics - Abstract
Graphene-based devices have shown great promise for several applications. For graphene devices to be used in real-world systems, it is necessary to demonstrate competitive device performance, repeatability of results, reliability, and a path to large-scale manufacturing with high yield at low cost. Here, we select single-layer graphene electro-absorption modulators as test vehicle and establish their wafer-scale integration in a 300mm pilot CMOS foundry environment. A hardmask is used to shape graphene, while tungsten-based contacts are fabricated using the damascene approach to enable CMOS-compatible fabrication. By analyzing data from hundreds of devices per wafer, the impact of specific processing steps on the performance could be identified and optimized. After optimization, modulation depth of 50 $\pm$ 4 dB/mm is demonstrated on 400 devices measured using 6 V peak-to-peak voltage. The electro-optical bandwidth is up to 15.1 $\pm$ 1 1.8 GHz for 25$\mu$m-long devices. The results achieved are comparable to lab-based record-setting graphene devices of similar design and CVD graphene quality. By demonstrating the reproducibility of the results across hundreds of devices, this work resolves the bottleneck of graphene wafer-scale integration. Furthermore, CMOS-compatible processing enables co-integration of graphene-based devices with other photonics and electronics building blocks on the same chip, and for high-volume low-cost manufacturing.
- Published
- 2023
18. Increasing the sensitivity of the Baikal-GVD neutrino telescope by using external strings of optical modules
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kebkal, V. K., Khatun, A., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Seitova, D., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Yablokova, Y. V., and Zaborov, D. N.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The deployment of the Baikal-GVD deep underwater neutrino telescope is continuing in Lake Baikal. By April 2022, ten clusters of the telescope were put into operation, with 2880 optical modules in total. One of the relevant tasks in this context is to study the possibilities of increasing the efficiency of the detector based on the experience of its operation and the results obtained at other neutrino telescopes in recent years. In this paper, a variant of optimizing the configuration of the telescope is considered, based on the installation of additional strings of optical modules between the clusters (external strings). An experimental version of the external string was installed in Lake Baikal in April 2022. This paper presents a first estimate of the impact of adding external strings on the neutrino detection efficiency, as well as the technical implementation of the detection and data acquisition systems of the external string and first results of its in-situ tests., Comment: 12 pages, in Russian language, 7 figures, 1 Table
- Published
- 2022
19. Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope
- Author
-
Baikal Collaboration, Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kebkal, V. K., Khatun, A., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Seitova, D., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Yablokova, Y. V., and Zaborov, D. N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on the first observation of the diffuse cosmic neutrino flux with the Baikal-GVD neutrino telescope. Using cascade-like events collected by Baikal-GVD in 2018--2021, a significant excess of events over the expected atmospheric background is observed. This excess is consistent with the high-energy diffuse cosmic neutrino flux observed by IceCube. The null cosmic flux assumption is rejected with a significance of 3.05$\sigma$. Assuming a single power law model of the astrophysical neutrino flux with identical contribution from each neutrino flavor, the following best-fit parameter values are found: the spectral index $\gamma_{astro}$ = $2.58^{+0.27}_{-0.33}$ and the flux normalization $\phi_{astro}$ = 3.04$^{+1.52}_{-1.21}$ per one flavor at 100 TeV., Comment: 9 pages; 5 figures; 2 tables
- Published
- 2022
- Full Text
- View/download PDF
20. Thermofrost-Resistant Poly[dimethyl(methylbenzyl)siloxanes]: Synthesis and Properties
- Author
-
Olenich, E. A., Gorodov, V. V., Milenin, S. A., Cherkaev, G. V., Khanin, D. A., Buzin, M. I., and Muzafarov, A. M.
- Published
- 2023
- Full Text
- View/download PDF
21. The Baikal-GVD Neutrino Telescope: Current Status and Development Prospects
- Author
-
Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh.-A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Published
- 2023
- Full Text
- View/download PDF
22. The Baikal-GVD Neutrino Telescope: Recent Results
- Author
-
Dzhilkibaev, Zh.-A. M., Aynutdinov, V. M., Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Bardačová, Z., Belolaptikov, I. A., Bondarev, E. A., Borina, I. V., Budnev, N. M., Chadymov, V. A., Chepurnov, A. S., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Eckerová, E., Elzhov, T. V., Fajt, L., Fomin, V. N., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kharuk, I. V., Khramov, E. V., Kolbin, M. M., Koligaev, S. O., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kulepov, V. F., Lemeshev, Y. E., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nikolaev, A. S., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Shilkin, S. D., Shirokov, E. V., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Ulzutuev, B. B., Yablokova, Y. V., Zaborov, D. N., Zavyalov, S. I., and Zvezdov, D. Y.
- Published
- 2023
- Full Text
- View/download PDF
23. Increasing the Sensitivity of the Baikal-GVD Neutrino Telescope Using External Strings of Optical Modules
- Author
-
Avrorin, A. V., Avrorin, A. D., Aynutdinov, V. M., Allakhverdyan, V. A., Bardaćhová, Z., Belolaptikov, I. A., Borina, I. V., Budnev, N. M., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Dvornicky, R., Dzhilkibaev, Zh.-A. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dyachok, A. N., Elzhov, T. V., Zaborov, D. N., Kebkal, V. K., Kebkal, K. G., Kozhin, V. A., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Nazari, V., Naumov, D. V., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Seitova, D., Sirenko, A. E., Skurikhin, A. V., Solovje, A. G., Sorokovikov, M. N., Stromakov, A. P., Suvorov, O. V., Tabolenko, V. A., Taraschansky, B. A., Fajt, L., Khatun, A., Khramov, E. V., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Šteckl, I., Eckerová, E., and Yablokova, Y. V.
- Published
- 2023
- Full Text
- View/download PDF
24. The Baikal-GVD neutrino telescope: search for high-energy cascades
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array construction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020., Comment: Submitted to Proc. of the 37th International Cosmic Ray Conference (ICRC 2021), PoS-1144, July 12th -- 23rd, 2021, Online -- Berlin, Germany. 8 pages, 7 figures
- Published
- 2021
25. Development of the Double Cascade Reconstruction Techniques in the Baikal-GVD Neutrino Telescope
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The Baikal-GVD is a neutrino telescope under construction in Lake Baikal. The main goal of the Baikal-GVD is to observe neutrinos via detecting the Cherenkov radiation of the secondary charged particles originating in the interactions of neutrinos. In 2021, the installation works concluded with 2304 optical modules installed in the lake resulting in effective volume approximately 0.4 km$^{3}$. In this paper, the first steps in the development of double cascade reconstruction techniques are presented., Comment: Presented at the 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
26. Positioning system for Baikal-GVD
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Baikal-GVD is a kilometer scale neutrino telescope currently under construction in Lake Baikal. Due to water currents in Lake Baikal, individual photomultiplier housings are mobile and can drift away from their initial position. In order to accurately determine the coordinates of the photomultipliers, the telescope is equipped with an acoustic positioning system. The system consists of a network of acoustic modems, installed along the telescope strings and uses acoustic trilateration to determine the coordinates of individual modems. This contribution discusses the current state of the positioning in Baikal-GVD, including the recent upgrade to the acoustic modem polling algorithm., Comment: Presented at 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
27. An efficient hit finding algorithm for Baikal-GVD muon reconstruction
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Data Analysis, Statistics and Probability - Abstract
The Baikal-GVD is a large scale neutrino telescope being constructed in Lake Baikal. The majority of signal detected by the telescope are noise hits, caused primarily by the luminescence of the Baikal water. Separating noise hits from the hits produced by Cherenkov light emitted from the muon track is a challenging part of the muon event reconstruction. We present an algorithm that utilizes a known directional hit causality criterion to contruct a graph of hits and then use a clique-based technique to select the subset of signal hits.The algorithm was tested on realistic detector Monte-Carlo simulation for a wide range of muon energies and has proved to select a pure sample of PMT hits from Cherenkov photons while retaining above 90\% of original signal., Comment: Presented at the 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
28. Method and portable bench for tests of the laser optical calibration system components for the Baikal-GVD underwater neutrino Cherenkov telescope
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fialkovski, L. Fajt f S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The large-scale deep underwater Cherenkov neutrino telescopes like Baikal-GVD, ANTARES or KM3NeT, require calibration and testing methods of their optical modules. These methods usually include laser-based systems which allow to check the telescope responses to the light and for real-time monitoring of the optical parameters of water such as absorption and scattering lengths, which show seasonal changes in natural reservoirs of water. We will present a testing method of a laser calibration system and a set of dedicated tools developed for Baikal- GVD, which includes a specially designed and built, compact, portable, and reconfigurable scanning station. This station is adapted to perform fast quality tests of the underwater laser sets just before their deployment in the telescope structure, even on ice, without darkroom. The testing procedure includes the energy stability test of the laser device, 3D scan of the light emission from the diffuser and attenuation test of the optical elements of the laser calibration system. The test bench consists primarily of an automatic mechanical scanner with a movable Si detector, beam splitter with a reference Si detector and, optionally, Q-switched diode-pumped solid-state laser used for laboratory scans of the diffusers. The presented test bench enables a three-dimensional scan of the light emission from diffusers, which are designed to obtain the isotropic distribution of photons around the point of emission. The results of the measurement can be easily shown on a 3D plot immediately after the test and may be also implemented to a dedicated program simulating photons propagation in water, which allows to check the quality of the diffuser in the scale of the Baikal-GVD telescope geometry., Comment: Presented at the VLVnT - Very Large Volume Neutrino Telescope Workshop, Valencia, 18-21 May 2021
- Published
- 2021
- Full Text
- View/download PDF
29. Methods for the suppression of background cascades produced along atmospheric muon tracks in the Baikal-GVD
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The Baikal-GVD (Gigaton Volume Detector) is a km$^{3}$- scale neutrino telescope located in Lake Baikal. Currently (year 2021) the Baikal-GVD is composed of 2304 optical modules divided to 8 independent detection units, called clusters. Specific neutrino interactions can cause Cherenkov light topology, referred to as a cascade. However, cascade-like events originate from discrete stochastic energy losses along muon tracks. These cascades produce the most abundant background in searching for high-energy neutrino cascade events. Several methods have been developed, optimized, and tested to suppress background cascades., Comment: Presented at the 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
30. Data Quality Monitoring system of the Baikal-GVD experiment
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Physics - Instrumentation and Detectors - Abstract
The main purpose of the Baikal-GVD Data Quality Monitoring (DQM) system is to monitor the status of the detector and collected data. The system estimates quality of the recorded signals and performs the data validation. The DQM system is integrated with the Baikal-GVD's unified software framework ("BARS") and operates in quasi-online manner. This allows us to react promptly and effectively to the changes in the telescope conditions., Comment: Contribution from the Baikal-GVD Collaboration presented at the 37th International Cosmic Ray Conference, Online - Berlin, Germany, 12-23 July 2021. Proceeding: PoS-ICRC2021-1094
- Published
- 2021
- Full Text
- View/download PDF
31. Multi-messenger and real-time astrophysics with the Baikal-GVD telescope
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Baikal-GVD deep underwater neutrino experiment participates in the international multi-messenger program on discovering the astrophysical sources of high energy fluxes of cosmic particles, while being at the stage of deployment with a gradual increase of its effective volume to the scale of a cubic kilometer. In April 2021 the effective volume of the detector has been reached 0.4 km3 for cascade events with energy above 100 TeV generated by neutrino interactions in Lake Baikal. The alarm system in real-time monitoring of the celestial sphere was launched at the beginning of 2021, that allows to form the alerts of two ranks like "muon neutrino" and "VHE cascade". Recent results of fast follow-up searches for coincidences of Baikal-GVD high energy cascades with ANTARES/TAToO high energy neutrino alerts and IceCube GCN messages will be presented, as well as preliminary results of searches for high energy neutrinos in coincidence with the magnetar SGR 1935+2154 activity in period of radio and gamma burst in 2020., Comment: Submitted to Proc. of the 37th International Cosmic Ray Conference (ICRC 2021), PoS-0946, July 12th -- 23rd, 2021, Online -- Berlin, Germany. 8 pages, 5 figures
- Published
- 2021
32. Follow up of the IceCube alerts with the Baikal-GVD telescope
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The high-energy muon neutrino events of the IceCube telescope, that are triggered as neutrino alerts in one of two probability ranks of astrophysical origin, "gold" and "bronze", have been followed up by the Baikal-GVD in a fast quasi-online mode since September 2020. Search for correlations between alerts and GVD events reconstructed in two modes, muon-track and cascades (electromagnetic or hadronic showers), for the time windows $ \pm $ 1 h and $ \pm $ 12 h does not indicate statistically significant excess of the measured events over the expected number of background events. Upper limits on the neutrino fluence will be presented for each alert., Comment: 5 pages, 5 figures, Proceedings for the VLVnT 2021 conference, submitted to JINST
- Published
- 2021
- Full Text
- View/download PDF
33. The Baikal-GVD neutrino telescope as an instrument for studying Baikal water luminescence
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
High Energy Physics - Phenomenology ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present data on the Baikal water luminescence collected with the Baikal-GVD neutrino telescope. This three-dimensional array of photo-sensors allows the observation of time and spatial variations of the ambient light field. We report on annual increase of luminescence activity in years 2018-2020. We observed a unique event of a highly luminescent layer propagating upwards with a maximum speed of 28 m/day for the first time., Comment: Contribution at 37th International Cosmic Ray Conference (ICRC 2021). arXiv admin note: text overlap with arXiv:1908.06509
- Published
- 2021
- Full Text
- View/download PDF
34. Proposal for fiber optic data acquisition system for Baikal-GVD
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
The first stage of the construction of the deep underwater neutrino telescope Baikal-GVD is planned to be completed in 2024. The second stage of the detector deployment is planned to be carried out using a data acquisition system based on fibre optic technologies, which will allow for increased data throughput and more flexible trigger conditions. A dedicated test facility has been built and deployed at the Baikal-GVD site to test the new technological solutions. We present the principles of operation and results of tests of the new data acquisition system., Comment: 4 pages, 1 figure, presented at the Conference VLVnT 2021
- Published
- 2021
- Full Text
- View/download PDF
35. Automatic data processing for Baikal-GVD neutrino observatory
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Instrumentation and Detectors - Abstract
Baikal-GVD is a gigaton-scale neutrino observatory under construction in Lake Baikal. It currently produces about 100 GB of data every day. For their automatic processing, the Baikal Analysis and Reconstruction software (BARS) was developed. At the moment, it includes such stages as hit extraction from PMT waveforms, assembling events from raw data, assigning timestamps to events, determining the position of the optical modules using an acoustic positioning system, data quality monitoring, muon track and cascade reconstruction, as well as the alert signal generation. These stages are implemented as C++ programs which are executed sequentially one after another and can be represented as a directed acyclic graph. The most resource-consuming programs run in parallel to speed up processing. A separate Python package based on the luigi package is responsible for program execution control. Additional information such as the program execution status and run metadata are saved into a central database and then displayed on the dashboard. Results can be obtained several hours after the run completion., Comment: Presented at the 37th International Cosmic Ray Conference (ICRC 2021)
- Published
- 2021
- Full Text
- View/download PDF
36. Measuring muon tracks in Baikal-GVD using a fast reconstruction algorithm
- Author
-
Collaboration, Baikal-GVD, Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Brudanin, V. B., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Fialkovski, S. V., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Katulin, M. S., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Kopański, K. A., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malecki, Pa., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Noga, W., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Sushenok, E. O., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., Yakovlev, S. A., and Zaborov, D. N.
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Baikal Gigaton Volume Detector (Baikal-GVD) is a km$^3$-scale neutrino detector currently under construction in Lake Baikal, Russia. The detector consists of several thousand optical sensors arranged on vertical strings, with 36 sensors per string. The strings are grouped into clusters of 8 strings each. Each cluster can operate as a stand-alone neutrino detector. The detector layout is optimized for the measurement of astrophysical neutrinos with energies of $\sim$ 100 TeV and above. Events resulting from charged current interactions of muon (anti-)neutrinos will have a track-like topology in Baikal-GVD. A fast $\chi^2$-based reconstruction algorithm has been developed to reconstruct such track-like events. The algorithm has been applied to data collected in 2019 from the first five operational clusters of Baikal-GVD, resulting in observations of both downgoing atmospheric muons and upgoing atmospheric neutrinos. This serves as an important milestone towards experimental validation of the Baikal-GVD design. The analysis is limited to single-cluster data, favoring nearly-vertical tracks., Comment: 15 pages, 6 figures, 1 table, to be published in Eur. Phys. J. C
- Published
- 2021
- Full Text
- View/download PDF
37. Results from Reconstructing a Neutrino in the Track Channel at the Deep-Water BAIKAL-GVD Telescope
- Author
-
Avrorin, A. V., Avrorin, A. D., Aynutdinov, V. M., Allakhverdyan, V. A., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Budnev, N. M., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Dvornický, R., Dzhilkibaev, Zh.-A. M., Dik, V. Ya., Domogatsky, G. V., Doroshenko, A. A., Dyachok, A. N., Elzhov, T. V., Zaborov, D. N., Kebkal, V. K., Kebkal, K. G., Kozhin, V. A., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malyshkin, Yu. M., Milenin, M. B., Mirgazov, R. R., Nazari, V., Naumov, D. V., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Seitova, D., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Fajt, L., Khatun, A., Khramov, E. V., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Štekl, I., Eckerová, E., and Yablokova, Y. V.
- Published
- 2023
- Full Text
- View/download PDF
38. Status of the Baikal-GVD Neutrino Telescope and Main Results
- Author
-
Allakhverdyan, V. A., Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Budnev, N. M., Dik, V. Y., Domogatsky, G. V., Doroshenko, A. A., Dvornický, R., Dyachok, A. N., Dzhilkibaev, Zh.-A. M., Eckerová, E., Elzhov, T. V., Fajt, L., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Kebkal, K. G., Kebkal, V. K., Khatun, A., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, V. A., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malyshkin, Y. M., Milenin, M. B., Mirgazov, R. R., Naumov, D. V., Nazari, V., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Seitova, D., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Sirenko, A. E., Skurikhin, A.V., Solovjev, A. G., Sorokovikov, M. N., Štekl, I., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Yablokova, Y. V., and Zaborov, D. N.
- Published
- 2023
- Full Text
- View/download PDF
39. Investigating the Anticancer Potential of Zinc and Magnesium Alloys: From Base Materials to Nanocoated Titanium Implants
- Author
-
Andrij Milenin, Łukasz Niedźwiedzki, Karolina Truchan, Grzegorz Guzik, Sławomir Kąc, Grzegorz Tylko, and Anna Maria Osyczka
- Subjects
nanocoating ,titanium implants ,biodegradable surgical wire ,ZnMg alloy ,cytotoxicity ,antitumor activity ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
In this work, we show the in vitro anticancer potential of surgical wires, obtained from zinc (ZnMg0.004) or magnesium (MgCa0.7) alloys by spatial technology comprising casting, extrusion, and final drawing processes. We also present the selective anticancer effects of applied soluble multilayer nanocoatings of zinc and magnesium onto titanium surfaces using the pulse laser deposition method. In the latter, the titanium samples were produced via 3D printing using the selective laser melting method and coated with various combinations of zinc and magnesium layers. For cytotoxicity studies, human dental pulp-derived stem cells (hDPSCs) and human osteosarcoma SaOS-2 cell line were used as representatives of healthy and cancer cells. Cells were examined against the 0.3–3.0 cm2/mL material extract ratios obtained from experimental and steel surgical wires, the latter being the current clinical industry standard. The MgCa0.7 alloy wires were approx. 1.5 times more toxic to cancer cells at all examined extract ratios vs. the extracts from steel surgical wires that exhibited comparable toxicity towards healthy and cancer cells. The ZnMg0.004 alloy wires displayed increased toxicity towards cancer cells with decreasing extract ratios. This was also reflected in the increased anticancer effectiveness, calculated based on the viability ratio of healthy cells to cancer cells, from 1.1 to 4.0 times. Healthy cell viability remained at 80–100%, whereas cancer cell survival fluctuated at 20–75%, depending on the extract ratio. Furthermore, the culture of normal or cancer cells on the surface of Zn/Mg-coated titanium allowed us to select combinations of specific coating layers that yielded a comparable anticancer effectiveness to that observed with the experimental wires that ranged between 2 and 3. Overall, this work not only demonstrates the substantial anticancer properties of the studied wires but also indicates that similar anticancer effects can be replicated with appropriate nanocoatings on titanium samples. We believe that this work lays the groundwork for the future potential development of the category of new implants endowed with anticancer properties.
- Published
- 2024
- Full Text
- View/download PDF
40. Effectiveness of Glecaprevir/Pibrentasvir in Patients with Chronic HCV-infection Genotypes 1 to 6 in the real-world settings in Russia (EVEREST study)
- Author
-
О. I. Sagalova, V. S. Adonieva, S. V. Zotov, D. A. Gusev, E. A. Strebkova, R. B. Galbraikh, V. G. Morozov, I. M. Khayertynova, I. V. Krasilnikova, I. V. Sannikova, A. Bhagat, D. O. Milenin, and A. P. Efremova
- Subjects
chronic hepatitis c ,glecaprevir/pibrentasvir combination ,observational study ,Infectious and parasitic diseases ,RC109-216 - Abstract
Background: Glecaprevir/pibrentasvir (GLE/PIB) is the first pangenotypic ribavirin-free regimen allowing for treatment duration as short as 8 weeks for the majority of patients with chronic hepatitis C (CHC) genotypes (GT) 1 to 6. The results of clinical trials showed good tolerability of GLE/PIB and high virologic response rate (mostly >95%) among different patient populations. The main objective of this study was to determine how the efficacy and safety of GLE/PIB translates into real-world clinical settings in Russia.Materials and Methods: This was a prospective, multicenter observational study in patients with CHC who received the GLE/PIB regimen. The treatment regimen was prescribed by a physician in accordance with all applicable requirements before the enrollment in the study. Patients were observed for the duration of GLE/PIB therapy and at least for up to 12 weeks after the treatment completion. Real-world data were collected in patient records. Follow-up visits, procedures, and diagnostic methods followed physicians’ routine clinical practice.Results: Overall 161 patients were enrolled in the study in 11 study sites of them 128 patients had sufficient follow-up data to assess sustained virological response 12 weeks [i.e. ≥70 days] after the end of treatment with GLE/PIB (SVR12). Overall, 127 out of 128 patients (99.2%) achieved SVR12. Depending on treatment duration the following SVR12 rates were achieved: 98.7% in 8-week group (75/76), 100% in 12-week group (49/49) and 100% in 16-week group (3/3). One patient failed to achieve SVR, the exact reasons of failure couldn’t be established by the Investigator.Since only one patient didn’t achieve primary endpoint the following SVR12 rates were achieved in different subpopulations: 91.7% in patients with GT2 (11/12); 98.9% in non-cirrhotic patients (88/89); 99.1% in treatment-naïve patients (113/114); 99.1% in patients without HIV co-infection (116/117); 99.2% in patients younger than 65 years (120/121).On the other hand, SVR12 was achieved by all patients (100%) in the following subpopulations: patients with GT3 (n=76), GT1a (n=5), GT1b (n=29) and other GTs (n=6); cirrhotic patients (n=36) and those with unknown cirrhosis status (n=3); treatment-experienced patients (n=14); HIV/HCV co-infected patients (n=11); patients older than 65 years (n=7); and drug users (n=10).No clinically significant abnormalities in the key laboratory parameters were noted during the study. On contrary, the overall improvement of the liver enzymes was observed at SVR12 Visit. There were 3 patients with 3 adverse events (AEs): 2 cases were mild (cough and rash), and 1 case was severe and evaluated as a serious AE (hepatic decompensation). Hepatic decompensation led to the patient withdrawal from the study; this serious AE was preceded by 2 months of daily alcohol consumption and in the investigator’s opinion was not related to GLE/PIB intake. Of all AEs only rash was related to GLE/PIB administration according to investigator’s opinion.Conclusion: GLE/PIB has proven to be a highly effective treatment regimen in the routine clinical practice in patients with all hepatitis C virus genotypes, including those with GT3 and compensated liver cirrhosis. SVR12 rates demonstrated in this study are fully consistent with the previously published data. The regimen was well tolerated by patients.
- Published
- 2023
- Full Text
- View/download PDF
41. Tracking IceCube Neutrino Alerts with the Deep-Water BAIKAL-GVD Telescope
- Author
-
Avrorin, A. V., Avrorin, A. D., Aynutdinov, V. M., Allakhverdyan, V. A., Bardačová, Z., Belolaptikov, I. A., Borina, I. V., Budnev, N. M., Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Dvornický, R., Dzhilkibaev, Zh.-A. M., Dik, V. Ya., Domogatsky, G. V., Doroshenko, A. A., Dyachok, A. N., Elzhov, T. V., Zaborov, D. N., Kebkal, V. K., Kebkal, K. G., Kozhin, V. A., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Malyshkin, Yu. M., Milenin, M. B., Mirgazov, R. R., Nazari, V., Naumov, D. V., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rushay, V. D., Ryabov, E. V., Safronov, G. B., Seitova, D., Sirenko, A. E., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stromakov, A. P., Suvorova, O. V., Tabolenko, V. A., Tarashansky, B. A., Fajt, L., Khatun, A., Khramov, E. V., Shaybonov, B. A., Shelepov, M. D., Šimkovic, F., Štekl, I., Eckerová, E., and Yablokova, Y. V.
- Published
- 2023
- Full Text
- View/download PDF
42. OPTIMIZATION OF RESOURCE ALLOCATION, EXPOSURE TIME AND ROTARY SPEED OF INCUBATIVE EGGS
- Author
-
Dmytro Milenin, Mykola Lysychenko, Andriy Milenin, Leonid Koval, Saltanat Amirgaliyeva, Maxatbek Satymbekov, and Saltanat Adikanova
- Subjects
laser emission ,radiation dose ,incubating egg ,Environmental engineering ,TA170-171 ,Environmental sciences ,GE1-350 - Abstract
Recently, the laser technology of influencing biological objects in biology, medicine, and veterinary medicine has become widespread in order to activate certain biochemical and physiological processes in the organism. Any influence of electromagnetic radiation (in particular optical emission) requires the exact adherence to the recommended illumination dose to obtain a positive effect on the biological object. The article presents the results of a theoretical study concerning provision of uniform illumination of the egg’s surface, taking into account the location of the laser radiation source and rotating time of the egg.
- Published
- 2023
- Full Text
- View/download PDF
43. Data Quality Monitoring system in the Baikal-GVD experiment
- Author
-
Collaboratio, Baikal GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The quality of the incoming experimental data has a significant importance for both analysis and running the experiment. The main point of the Baikal-GVD DQM system is to monitor the status of the detector and obtained data on the run-by-run based analysis. It should be fast enough to be able to provide analysis results to detector shifter and for participation in the global multi-messaging system., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-0874
- Published
- 2019
44. The optical noise monitoring systems of Lake Baikal environment for the Baikal-GVD telescope
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present data on the luminescence of the Baikal water medium collected with the Baikal-GVD neutrino telescope. This three-dimensional array of light sensors allows the observation of time and spatial variations of the ambient light field. We report on observation of an increase of luminescence activity in 2016 and 2018. On the contrary, we observed practically constant optical noise in 2017. An agreement has been found between two independent optical noise data sets. These are data collected with online monitoring system and the trigger system of the cluster., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-0875
- Published
- 2019
45. The inter-cluster time synchronization systems within the Baikal-GVD detector
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Currently in Lake Baikal, a new generation neutrino telescope is being deployed: the deep underwater Cherenkov detector of a cubic-kilometer scale Baikal-GVD. Completion of the first stage of the telescope construction is planned for 2021 with the implementation of 9 clusters. Each cluster is a completely independent unit in all the aspects: triggering, calibration, data transfer, etc. A high-energy particle might leave its trace in more than a single cluster. To be able to merge events caused by such a particle in more clusters, the appropriate inter-cluster time synchronization is vital., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-0877
- Published
- 2019
46. A positioning system for Baikal-GVD
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
A cubic kilometer scale neutrino telescope Baikal-GVD is currently under construction in Lake Baikal. Baikal-GVD is designed to detect Cerenkov radiation from products of astrophysical neutrino interactions with Baikal water by a lattice of photodetectors submerged between the depths of 1275 and 730 m. The detector components are mounted on flexible strings and can drift from their initial positions upwards to tens of meters. This introduces positioning uncertainty which translates into a timing error for Cerenkov signal registration. A spatial positioning system has been developed to resolve this issue. In this contribution, we present the status of this system, results of acoustic measurements and an estimate of positioning error for an individual component., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-1012
- Published
- 2019
47. The Baikal-GVD detector calibration
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Physics - Instrumentation and Detectors - Abstract
In April 2019, the Baikal-GVD collaboration finished the installation of the fourth and fifth clusters of the neutrino telescope Baikal-GVD. Momentarily, 1440 Optical Modules (OM) are installed in the largest and deepest freshwater lake in the world, Lake Baikal, instrumenting 0.25 cubic km of sensitive volume. The Baikal-GVD is thus the largest neutrino telescope on the Northern Hemisphere. The first phase of the detector construction is going to be finished in 2021 with 9 clusters, 2592 OMs in total, however the already installed clusters are stand-alone units which are independently operational and taking data from their commissioning. Huge number of channels as well as strict requirements for the precision of the time and charge calibration (ns, p.e.) make calibration procedures vital and very complex tasks. The inter cluster time calibration is performed with numerous calibration systems. The charge calibration is carried out with a Single Photo-Electron peak. The various data acquired during the last three years in regular and special calibration runs validate successful performance of the calibration systems and of the developed calibration techniques. The precision of the charge calibration has been improved and the time dependence of the obtained calibration parameters have been cross-checked. The multiple calibration sources verified a 1.5 - 2.0 ns precision of the in-situ time calibrations. The time walk effect has been studied in detail with in situ specialized calibration runs., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-0878
- Published
- 2019
48. The Baikal-GVD neutrino telescope: First results of multi-messenger studies
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Multi-messenger astronomy is a powerful tool to study the physical processes driving the non-thermal Universe. A combination of observations in cosmic rays, neutrinos, photons of all wavelengths and gravitational waves is expected. The alert system of the Baikal-GVD detector under construction will allow for a fast, on-line reconstruction of neutrino events recorded by the Baikal-GVD telescope and - if predefined conditions are satisfied - for the formation of an alert message to other communities. The preliminary results of searches for high-energy neutrinos in coincidence with GW170817/GRB170817A using the cascade mode of neutrino detection are discussed. Two Baikal-GVD clusters were operating during 2017. The zenith angle of NGC 4993 at the detection time of the GW170817 was 93.3 degrees. No events spatially coincident with GRB170817A were found. Given the non-detection of neutrino events associated with GW170817, upper limits on the neutrino fluence were established., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-1013
- Published
- 2019
49. Search for cascade events with Baikal-GVD
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Baikal-GVD is a next generation, kilometer-scale neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-megaton sub-arrays (clusters) and is designed for the detection of astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. The design of the Baikal-GVD allows one to search for astrophysical neutrinos with flux values measured by IceCube already at early phases of the array construction. We present here preliminary results of the search for high-energy neutrinos via the cascade mode with the Baikal-GVD neutrino telescope., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-0873
- Published
- 2019
50. Neutrino Telescope in Lake Baikal: Present and Future
- Author
-
Collaboration, Baikal-GVD, Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannash, R., Belolaptikov, I. A, Brudanin, V. B., Budnev, N. M., Domogatsky, G. V., Doroshenko, A. A., Dvornicky, R., Dyachok, A. N., Dzhilkibaev, Zh. -A. M., Fajth, L., Fialkovsky, S. V, Gafarov, A. R., Golubkov, K. V., Gorshkov, N. S., Gress, T. I., Ivanov, R., Kebkal, K. G., Kebkal, O. G., Khramov, E. V., Kolbin, M. M., Konischev, K. V., Korobchenko, A. V., Koshechkin, A. P., Kozhin, A. V., Kruglov, M. V., Kryukov, M. K., Kulepov, V. F., Milenin, M. B., Mirgazov, R. A., Nazari, V., Panfilov, A. I., Petukhov, D. P., Pliskovsky, E. N., Rozanov, M. I., Rjabov, E. V., Rushay, V. D., Safronov, G. B., Shaybonov, B. A., Shelepov, M. D., Simkovic, F., Skurikhin, A. V., Solovjev, A. G., Sorokovikov, M. N., Stekl, I., Suvorova, O. V., Sushenok, E. O., Tabolenko, V. A., Tarashansky, B. A., and Yakovlev, S. A.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
A significant progress in the construction and operation of the Baikal Gigaton Volume Detector in Lake Baikal, the largest and deepest freshwater lake in the world, is reported. The effective volume of the detector for neutrino initiated cascades of relativistic particles with energy above 100 TeV has been increased up to about 0.25 cubic kilometer. This unique scientific facility, the largest operating neutrino telescope in Northern Hemisphere, allows already to register two to three events per year from astrophysical neutrinos with energies exceeding 100 TeV. Preliminary results obtained with data recorded in 2016-2018 are announced. Multimessenger approach is used to relate finding of cosmic neutrinos with those of classical astronomers, with X-ray or gamma-ray observations and the gravitational wave events., Comment: Contribution from the Baikal-GVD Collaboration presented at the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July - 1 August 2019. Proceeding: PoS-ICRC2019-1011
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.