1. Introducing Flexible Monotone Multiple Choice Item Response Theory Models and Bit Scales
- Author
-
Wallmark, Joakim, Josefsson, Maria, and Wiberg, Marie
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning ,Statistics - Methodology - Abstract
Item Response Theory (IRT) is a powerful statistical approach for evaluating test items and determining test taker abilities through response analysis. An IRT model that better fits the data leads to more accurate latent trait estimates. In this study, we present a new model for multiple choice data, the monotone multiple choice (MMC) model, which we fit using autoencoders. Using both simulated scenarios and real data from the Swedish Scholastic Aptitude Test, we demonstrate empirically that the MMC model outperforms the traditional nominal response IRT model in terms of fit. Furthermore, we illustrate how the latent trait scale from any fitted IRT model can be transformed into a ratio scale, aiding in score interpretation and making it easier to compare different types of IRT models. We refer to these new scales as bit scales. Bit scales are especially useful for models for which minimal or no assumptions are made for the latent trait scale distributions, such as for the autoencoder fitted models in this study.
- Published
- 2024