442,653 results on '"A. Inoue"'
Search Results
2. Formation, microstructure and mechanical properties of ductile Zr-rich Zr–Cu–Al bulk metallic glass composites
- Author
-
J. Ding, A. Inoue, S.L. Zhu, S.L. Wu, E. Shalaan, and A.A. Al-Ghamdi
- Subjects
Bulk metallic glass composite ,Microstructure ,Glass ,Mechanical properties ,Plastic deformation ,Mining engineering. Metallurgy ,TN1-997 - Abstract
We examined the microstructure, phase stability, mechanical properties and deformation behaviors of cast (Zr0.58Cu0.42)100-xAlx (x = 0, 3, 5, 7, 10) bulk metallic glass composites (BMGCs). With increasing Al content, the glass-forming ability of the new Zr-rich Zr–Cu–Al alloys gradually increases, enabling the fabrication of BMGCs for the alloys containing more than 3 at.% Al. The as-cast structure changes from Cu10Zr7 + CuZr2 for the Al-free base alloy to glass + crystal for the Al-added alloys. The new Zr-rich Zr–Cu–Al BMGCs exhibit a large fracture strain of ∼3.4–7.8% and a high fracture strength of ∼1731–1984 MPa under compression. The compressive fracture strain of Zr-rich Zr–Cu–Al alloys can be explained by the percolation theory. The (Zr0.58Cu0.42)95Al5 composite containing ∼70 vol.% crystalline phase possesses the largest plastic strain of ∼6%, and fracture strength of over 1900 MPa under compressive condition. The superior plastic deformation capability under compression is related to the following factors: (1) The formation of three types of shear bands with distinct morphological characteristics, (2) the plastic deformation of B2–CuZr phase itself, together with stress-induced martensitic transformation from B2–CuZr phase to B19’ phase, and (3) the interaction between crystals and shear bands. The present results have implications for better understanding the deformation mechanisms of the Zr-rich Zr–Cu–Al BMGCs and for designing high-performance BMGCs with enhanced plasticity.
- Published
- 2021
- Full Text
- View/download PDF
3. On the possible contributions of two nearby blazars to the NGC 4151 neutrino hotspot
- Author
-
Omeliukh, Anastasiia, Barnier, Samuel, and Inoue, Yoshiyuki
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The origin of the high-energy astrophysical neutrinos discovered by IceCube remains unclear, with both blazars and Seyfert galaxies emerging as potential sources. Recently, the IceCube Collaboration reported a ${\sim}{3}\sigma$ neutrino signal from the direction of a nearby Seyfert galaxy NGC 4151. However, two gamma-ray loud BL Lac objects, 4FGL 1210.3+3928 and 4FGL J1211.6+3901, lie close to NGC 4151, at angular distances of 0.08$^\circ$ and 0.43$^\circ$, respectively. We investigate the potential contribution of these two blazars to the observed neutrino signal from the direction of NGC 4151 and assess their detectability with future neutrino observatories. We model the multi-wavelength spectral energy distributions of both blazars using a self-consistent numerical radiation code, AM$^3$. We calculate their neutrino spectra and compare them to the measured NGC 4151 neutrino spectrum and future neutrino detector sensitivities. Our models predict neutrino emission peaking at $\sim$10$^{17}$ eV for both blazars, with fluxes of ${\sim}10^{-12}~\mathrm{erg~cm^{-2}~s^{-1}}$. This indicates their contribution to the $\sim$10 TeV neutrino signal observed from the direction of NGC 4151 is minor. While detection with current facilities is challenging, both sources should be detectable by future radio-based neutrino telescopes such as IceCube-Gen2's radio array and GRAND, with 4FGL~J1210.3+3928 being the more promising candidate., Comment: 6 pages, 5 figures. Submitted to A&A Letters
- Published
- 2024
4. Rising Near-Ultraviolet Spectra in Stellar Megaflares
- Author
-
Kowalski, Adam F., Osten, Rachel A., Notsu, Yuta, Tristan, Isaiah I., Segura, Antigona, Maehara, Hiroyuki, Namekata, Kosuke, and Inoue, Shun
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Flares from M-dwarf stars can attain energies up to $10^4$ times larger than solar flares but are generally thought to result from similar processes of magnetic energy release and particle acceleration. Larger heating rates in the low atmosphere are needed to reproduce the shape and strength of the observed continua in stellar flares, which are often simplified to a blackbody model from the optical to the far-ultraviolet (FUV). The near-ultraviolet (NUV) has been woefully undersampled in spectral observations despite this being where the blackbody radiation should peak. We present Hubble Space Telescope NUV spectra in the impulsive phase of a flare with $E_{\rm{TESS}} \approx 7.5 \times 10^{33}$ erg and a flare with $E_{\rm{TESS}} \approx 10^{35}$ erg and the largest NUV flare luminosity observed to date from an M star. The composite NUV spectra are not well represented by a single blackbody that is commonly assumed in the literature. Rather, continuum flux rises toward shorter wavelengths into the FUV, and we calculate that an optical $T=10^4$ K blackbody underestimates the short wavelength NUV flux by a factor of $\approx 6$. We show that rising NUV continuum spectra can be reproduced by collisionally heating the lower atmosphere with beams of $E \gtrsim 10$ MeV protons or $E \gtrsim 500$ keV electrons and flux densities of $10^{13}$ erg cm$^{-2}$ s$^{-1}$. These are much larger than canonical values describing accelerated particles in solar flares., Comment: Accepted for publication in the Astrophysical Journal
- Published
- 2024
5. Almost Time-Optimal Loosely-Stabilizing Leader Election on Arbitrary Graphs Without Identifiers in Population Protocols
- Author
-
Kanaya, Haruki, Eguchi, Ryota, Sasada, Taisho, and Inoue, Michiko
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing - Abstract
The population protocol model is a computational model for passive mobile agents. We address the leader election problem, which determines a unique leader on arbitrary communication graphs starting from any configuration. Unfortunately, self-stabilizing leader election is impossible to be solved without knowing the exact number of agents; thus, we consider loosely-stabilizing leader election, which converges to safe configurations in a relatively short time, and holds the specification (maintains a unique leader) for a relatively long time. When agents have unique identifiers, Sudo et al.(2019) proposed a protocol that, given an upper bound $N$ for the number of agents $n$, converges in $O(mN\log n)$ expected steps, where $m$ is the number of edges. When unique identifiers are not required, they also proposed a protocol that, using random numbers and given $N$, converges in $O(mN^2\log{N})$ expected steps. Both protocols have a holding time of $\Omega(e^{2N})$ expected steps and use $O(\log{N})$ bits of memory. They also showed that the lower bound of the convergence time is $\Omega(mN)$ expected steps for protocols with a holding time of $\Omega(e^N)$ expected steps given $N$. In this paper, we propose protocols that do not require unique identifiers. These protocols achieve convergence times close to the lower bound with increasing memory usage. Specifically, given $N$ and an upper bound $\Delta$ for the maximum degree, we propose two protocols whose convergence times are $O(mN\log n)$ and $O(mN\log N)$ both in expectation and with high probability. The former protocol uses random numbers, while the latter does not require them. Both protocols utilize $O(\Delta \log N)$ bits of memory and hold the specification for $\Omega(e^{2N})$ expected steps.
- Published
- 2024
6. Exploring x-ray irradiation conditions for triggering ultrafast diamond graphitization
- Author
-
Lipp, Vladimir, Tkachenko, Victor, Inoue, Ichiro, Heimann, Philip, Ryzhkova, Anastasiia, Bashandi, Abdelkhalek, and Ziaja, Beata
- Subjects
Condensed Matter - Materials Science - Abstract
Intense femtosecond x-ray pulses produced by an x-ray free-electron laser can trigger irreversible structural transitions in crystalline solids. For instance, irradiation of diamond can lead to graphitization and, at higher deposited doses, to amorphization. Our Monte Carlo simulations of irradiated diamond under realistic experimental conditions demonstrate that triggering graphitization or other phase transitions with hard x-ray photons can be challenging due to the ballistic escape of photoelectrons out of the beam focus. Decisive parameter here is the photoelectron range in proportion to the focal beam size. For future experiments on x-ray-induced transitions, such dedicated simulations of ballistic transport preceding the beamtime will be necessary. They can predict experimental conditions under which the desired distribution of the absorbed x-ray dose in the irradiated solid can be achieved., Comment: 15 pages, 2 figures, 1 table. Submitted to Phys. Rev. B
- Published
- 2024
7. The JCMT BISTRO Survey: The Magnetic Fields of the IC 348 Star-forming Region
- Author
-
Choi, Youngwoo, Kwon, Woojin, Pattle, Kate, Arzoumanian, Doris, Bourke, Tyler L., Hoang, Thiem, Hwang, Jihye, Koch, Patrick M., Sadavoy, Sarah, Bastien, Pierre, Furuya, Ray, Lai, Shih-Ping, Qiu, Keping, Ward-Thompson, Derek, Berry, David, Byun, Do-Young, Chen, Huei-Ru Vivien, Chen, Wen Ping, Chen, Mike, Chen, Zhiwei, Ching, Tao-Chung, Cho, Jungyeon, Choi, Minho, Choi, Yunhee, Coudé, Simon, Chrysostomou, Antonio, Chung, Eun Jung, Dai, Sophia, Debattista, Victor, Di Francesco, James, Diep, Pham Ngoc, Doi, Yasuo, Duan, Hao-Yuan, Duan, Yan, Eswaraiah, Chakali, Fanciullo, Lapo, Fiege, Jason, Fissel, Laura M., Franzmann, Erica, Friberg, Per, Friesen, Rachel, Fuller, Gary, Gledhill, Tim, Graves, Sarah, Greaves, Jane, Griffin, Matt, Gu, Qilao, Han, Ilseung, Hasegawa, Tetsuo, Houde, Martin, Hull, Charles L. H., Inoue, Tsuyoshi, Inutsuka, Shu-ichiro, Iwasaki, Kazunari, Jeong, Il-Gyo, Johnstone, Doug, Karoly, Janik, Könyves, Vera, Kang, Ji-hyun, Lacaille, Kevin, Law, Chi-Yan, Lee, Chang Won, Lee, Hyeseung, Lee, Chin-Fei, Lee, Jeong-Eun, Lee, Sang-Sung, Li, Dalei, Li, Di, Li, Guangxing, Li, Hua-bai, Lin, Sheng-Jun, Liu, Hong-Li, Liu, Tie, Liu, Sheng-Yuan, Liu, Junhao, Longmore, Steven, Lu, Xing, Lyo, A-Ran, Mairs, Steve, Matsumura, Masafumi, Matthews, Brenda, Moriarty-Schieven, Gerald, Nagata, Tetsuya, Nakamura, Fumitaka, Nakanishi, Hiroyuki, Ngoc, Nguyen Bich, Ohashi, Nagayoshi, Onaka, Takashi, Park, Geumsook, Parsons, Harriet, Peretto, Nicolas, Priestley, Felix, Pyo, Tae-Soo, Qian, Lei, Rao, Ramprasad, Rawlings, Jonathan, Rawlings, Mark, Retter, Brendan, Richer, John, Rigby, Andrew, Saito, Hiro, Savini, Giorgio, Seta, Masumichi, Sharma, Ekta, Shimajiri, Yoshito, Shinnaga, Hiroko, Soam, Archana, Kang, Miju, Kataoka, Akimasa, Kawabata, Koji, Kemper, Francisca, Kim, Jongsoo, Kim, Shinyoung, Kim, Gwanjeong, Kim, Kyoung Hee, Kim, Mi-Ryang, Kim, Kee-Tae, Kim, Hyosung, Kirchschlager, Florian, Kirk, Jason, Kobayashi, Masato I. N., Kusune, Takayoshi, Kwon, Jungmi, Tamura, Motohide, Tang, Ya-Wen, Tang, Xindi, Tomisaka, Kohji, Tsukamoto, Yusuke, Viti, Serena, Wang, Hongchi, Wang, Jia-Wei, Wu, Jintai, Xie, Jinjin, Yang, Meng-Zhe, Yen, Hsi-Wei, Yoo, Hyunju, Yuan, Jinghua, Yun, Hyeong-Sik, Zenko, Tetsuya, Zhang, Guoyin, Zhang, Yapeng, Zhang, Chuan-Peng, Zhou, Jianjun, Zhu, Lei, de Looze, Ilse, André, Philippe, Dowell, C. Darren, Eden, David, Eyres, Stewart, Falle, Sam, Gouellec, Valentin J. M. Le, Poidevin, Frédérick, and van Loo, Sven
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present 850 $\mu$m polarization observations of the IC 348 star-forming region in the Perseus molecular cloud as part of the B-fields In STar-forming Region Observation (BISTRO) survey. We study the magnetic properties of two cores (HH 211 MMS and IC 348 MMS) and a filamentary structure of IC 348. We find that the overall field tends to be more perpendicular than parallel to the filamentary structure of the region. The polarization fraction decreases with intensity, and we estimate the trend by power-law and the mean of the Rice distribution fittings. The power indices for the cores are much smaller than 1, indicative of possible grain growth to micron size in the cores. We also measure the magnetic field strengths of the two cores and the filamentary area separately by applying the Davis-Chandrasekhar-Fermi method and its alternative version for compressed medium. The estimated mass-to-flux ratios are 0.45-2.20 and 0.63-2.76 for HH 211 MMS and IC 348 MMS, respectively, while the ratios for the filament is 0.33-1.50. This result may suggest that the transition from subcritical to supercritical conditions occurs at the core scale ($\sim$ 0.05 pc) in the region. In addition, we study the energy balance of the cores and find that the relative strength of turbulence to the magnetic field tends to be stronger for IC 348 MMS than HH 211 MMS. The result could potentially explain the different configurations inside the two cores: a single protostellar system in HH 211 MMS and multiple protostars in IC 348 MMS., Comment: Accepted for publication in ApJ. 21 pages, 12 figures
- Published
- 2024
8. Phase Diagram of Vision Large Language Models Inference: A Perspective from Interaction across Image and Instruction
- Author
-
Wei, Houjing, Cho, Hakaze, Shi, Yuting, and Inoue, Naoya
- Subjects
Computer Science - Computation and Language - Abstract
Vision Large Language Models (VLLMs) usually take input as a concatenation of image token embeddings and text token embeddings and conduct causal modeling. However, their internal behaviors remain underexplored, raising the question of interaction among two types of tokens. To investigate such multimodal interaction during model inference, in this paper, we measure the contextualization among the hidden state vectors of tokens from different modalities. Our experiments uncover a four-phase inference dynamics of VLLMs against the depth of Transformer-based LMs, including (I) Alignment: In very early layers, contextualization emerges between modalities, suggesting a feature space alignment. (II) Intra-modal Encoding: In early layers, intra-modal contextualization is enhanced while inter-modal interaction is suppressed, suggesting a local encoding within modalities. (III) Inter-modal Encoding: In later layers, contextualization across modalities is enhanced, suggesting a deeper fusion across modalities. (IV) Output Preparation: In very late layers, contextualization is reduced globally, and hidden states are aligned towards the unembedding space., Comment: 6 pages, 5 figures
- Published
- 2024
9. CubiXMusashi: Fusion of Wire-Driven CubiX and Musculoskeletal Humanoid Musashi toward Unlimited Performance
- Author
-
Inoue, Shintaro, Kawaharazuka, Kento, Suzuki, Temma, Yuzaki, Sota, Ribayashi, Yoshimoto, Sahara, Yuta, and Okada, Kei
- Subjects
Computer Science - Robotics - Abstract
Humanoids exhibit a wide variety in terms of joint configuration, actuators, and degrees of freedom, resulting in different achievable movements and tasks for each type. Particularly, musculoskeletal humanoids are developed to closely emulate human body structure and movement functions, consisting of a skeletal framework driven by numerous muscle actuators. The redundant arrangement of muscles relative to the skeletal degrees of freedom has been used to represent the flexible and complex body movements observed in humans. However, due to this flexible body and high degrees of freedom, modeling, simulation, and control become extremely challenging, limiting the feasible movements and tasks. In this study, we integrate the musculoskeletal humanoid Musashi with the wire-driven robot CubiX, capable of connecting to the environment, to form CubiXMusashi. This combination addresses the shortcomings of traditional musculoskeletal humanoids and enables movements beyond the capabilities of other humanoids. CubiXMusashi connects to the environment with wires and drives by winding them, successfully achieving movements such as pull-up, rising from a lying pose, and mid-air kicking, which are difficult for Musashi alone. This concept demonstrates that various humanoids, not limited to musculoskeletal humanoids, can mitigate their physical constraints and acquire new abilities by connecting to the environment and driving through wires., Comment: Accepted Humanoids2024, website - https://shin0805.github.io/cubixmusashi/, YouTube - https://youtu.be/IvzP98-r_mo
- Published
- 2024
10. Anisotropy in magnetoelastic effects of YCo5
- Author
-
Inoue, Jun-ichiro and Tsuchiura, Hiroki
- Subjects
Condensed Matter - Materials Science - Abstract
We develop the phenomenological theory for uniaxial ferromagnets, and derive explicit formulae for their magnetostriction (MS) and magnetic anisotropy energy (MAE) generated by the magnetoelastic (ME) effects. An analysis of the experimental results for the MS in hexagonal YCo$_{5}$ using the formulae obtained reveals that 1) an elastic anomaly should appear in the elastic constant $c_{33}$, and 2) the MAE caused by the ME effects could be non-negligible. The calculated results of electronic structure under lattice deformation indicate that the particular arrangement of Co atoms in the lattice is related to the anisotropy of MS in YCo$_{5}$. It is suggested that the anisotropic MS observed for various Y-compounds could be interpreted in a similar manner., Comment: 9 pages, 7 figures, to appear in Phys. Rev. Mater
- Published
- 2024
11. All-optical measurement-device-free feedforward enabling ultra-fast quantum information processing
- Author
-
Yamashima, Taichi, Kashiwazaki, Takahiro, Suzuki, Takumi, Nehra, Rajveer, Nakamura, Tomohiro, Inoue, Asuka, Umeki, Takeshi, Takase, Kan, Asavanant, Warit, Endo, Mamoru, and Furusawa, Akira
- Subjects
Quantum Physics - Abstract
Optical circuit systems, unlike other systems, have the potential to perform quantum information processing (QIP) at higher clock rate than conventional processing. The approach utilizing the electromagnetic field of light allows deterministic QIP by feedforward process, which counteracts the quantum randomness by performing adaptive quantum operation according to the measurement result of an entangled state. However, conventional feedforward with electronic measurement devices has limited the clock rate of the QIP down to around 100 MHz. In this paper, we demonstrate a variable squeezing gate with a clock rate of 1.3 THz by all-optical measurement-device-free feedforward. We utilize a periodically poled lithium niobate (PPLN) waveguide as an optical parametric amplifier, which eliminates the need for electronic measuring devices and enables ultra-fast feedforward. Experimental results demonstrate that our all-optical QIP operates at a THz clock rate, representing a major step toward a true optical quantum computer which opens the curtain to a new era of ultra-fast information processing., Comment: 18 pages, 5 figures
- Published
- 2024
12. GR-RMHD Simulations of Super-Eddington Accretion Flows onto a Neutron Star with Dipole and Quadrupole Magnetic Fields
- Author
-
Inoue, Akihiro, Ohsuga, Ken, Takahashi, Hiroyuki R., Asahina, Yuta, and Middleton, Matthew J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Although ultraluminous X-ray pulsars (ULXPs) are believed to be powered by super-Eddington accretion onto a magnetized neutron star (NS), the detailed structures of the inflow-outflow and magnetic fields are still not well understood. We perform general relativistic radiation magnetohydrodynamics (GR-RMHD) simulations of super-Eddington accretion flows onto a magnetized NS with dipole and/or quadrupole magnetic fields. Our results show that an accretion disk and optically thick outflows form outside the magnetospheric radius, while inflows aligned with magnetic field lines appear inside. When the dipole field is more prominent than the quadrupole field at the magnetospheric radius, accretion columns form near the magnetic poles, whereas a quadrupole magnetic field stronger than the dipole field results in the formation of a belt-like accretion flow near the equatorial plane. The NS spins up as the angular momentum of the accreting gas is converted into the angular momentum of the electromagnetic field, which then flows into the NS. Even if an accretion column forms near one of the magnetic poles, the observed luminosity is almost the same on both sides with the accretion column and the side without it because the radiation energy is transported to both sides through scattering. Our model suggests that galactic ULXP, Swift J0243.6+6124, has a quadrupole magnetic field of $2\times10^{13}~{\rm G}$ and a dipole magnetic field of less than $4\times10^{12}~{\rm G}$., Comment: 22 pages, 12 figures, accepted for publication in ApJ
- Published
- 2024
- Full Text
- View/download PDF
13. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
14. A new method of reconstructing images of gamma-ray telescopes applied to the LST-1 of CTAO
- Author
-
Project, CTA-LST, Abe, K., Abe, S., Abhishek, A., Acero, F., Aguasca-Cabot, A., Agudo, I., Alispach, C., Crespo, N. Alvarez, Ambrosino, D., Antonelli, L. A., Aramo, C., Arbet-Engels, A., Arcaro, C., Asano, K., Aubert, P., Baktash, A., Balbo, M., Bamba, A., Larriva, A. Baquero, de Almeida, U. Barres, Barrio, J. A., Jiménez, L. Barrios, Batkovic, I., Baxter, J., González, J. Becerra, Bernardini, E., Medrano, J. Bernete, Berti, A., Bezshyiko, I., Bhattacharjee, P., Bigongiari, C., Bissaldi, E., Blanch, O., Bonnoli, G., Bordas, P., Borkowski, G., Brunelli, G., Bulgarelli, A., Burelli, I., Burmistrov, L., Buscemi, M., Cardillo, M., Caroff, S., Carosi, A., Carrasco, M. S., Cassol, F., Castrejón, N., Cauz, D., Cerasole, D., Ceribella, G., Chai, Y., Cheng, K., Chiavassa, A., Chikawa, M., Chon, G., Chytka, L., Cicciari, G. M., Cifuentes, A., Contreras, J. L., Cortina, J., Costantini, H., Da Vela, P., Dalchenko, M., Dazzi, F., De Angelis, A., de Lavergne, M. de Bony, De Lotto, B., de Menezes, R., Del Burgo, R., Del Peral, L., Delgado, C., Mengual, J. Delgado, della Volpe, D., Dellaiera, M., Di Piano, A., Di Pierro, F., Di Tria, R., Di Venere, L., Díaz, C., Dominik, R. M., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Eisenberger, L., Elsässer, D., Emery, G., Escudero, J., Ramazani, V. Fallah, Ferrarotto, F., Fiasson, A., Foffano, L., Coromina, L. Freixas, Fröse, S., Fukazawa, Y., López, R. Garcia, Gasbarra, C., Gasparrini, D., Geyer, D., Paiva, J. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Godinovic, N., Grau, R., Green, D., Green, J., Gunji, S., Günther, P., Hackfeld, J., Hadasch, D., Hahn, A., Hassan, T., Hayashi, K., Heckmann, L., Heller, M., Llorente, J. Herrera, Hirotani, K., Hoffmann, D., Horns, D., Houles, J., Hrabovsky, M., Hrupec, D., Hui, D., Iarlori, M., Imazawa, R., Inada, T., Inome, Y., Inoue, S., Ioka, K., Iori, M., Iuliano, A., Martinez, I. Jimenez, Quiles, J. Jimenez, Jurysek, J., Kagaya, M., Kalashev, O., Karas, V., Katagiri, H., Kataoka, J., Kerszberg, D., Kobayashi, Y., Kohri, K., Kong, A., Kubo, H., Kushida, J., Lainez, M., Lamanna, G., Lamastra, A., Lemoigne, L., Linhoff, M., Longo, F., López-Coto, R., López-Oramas, A., Loporchio, S., Lorini, A., Bahilo, J. Lozano, Luciani, H., Luque-Escamilla, P. L., Majumdar, P., Makariev, M., Mallamaci, M., Mandat, D., Manganaro, M., Manicò, G., Mannheim, K., Marchesi, S., Mariotti, M., Marquez, P., Marsella, G., Martí, J., Martinez, O., Martínez, G., Martínez, M., Mas-Aguilar, A., Maurin, G., Mazin, D., Méndez-Gallego, J., Guillen, E. Mestre, Micanovic, S., Miceli, D., Miener, T., Miranda, J. M., Mirzoyan, R., Mizuno, T., Gonzalez, M. Molero, Molina, E., Montaruli, T., Moralejo, A., Morcuende, D., Morselli, A., Moya, V., Muraishi, H., Nagataki, S., Nakamori, T., Neronov, A., Nickel, L., Rosillo, M. Nievas, Nikolic, L., Nishijima, K., Noda, K., Nosek, D., Novotny, V., Nozaki, S., Ohishi, M., Ohtani, Y., Oka, T., Okumura, A., Orito, R., Otero-Santos, J., Ottanelli, P., Owen, E., Palatiello, M., Paneque, D., Pantaleo, F. R., Paoletti, R., Paredes, J. M., Pech, M., Pecimotika, M., Peresano, M., Pfeifle, F., Pietropaolo, E., Pihet, M., Pirola, G., Plard, C., Podobnik, F., Pons, E., Prandini, E., Priyadarshi, C., Prouza, M., Rainò, S., Rando, R., Rhode, W., Ribó, M., Righi, C., Rizi, V., Fernandez, G. Rodriguez, Frías, M. D. Rodríguez, Ruina, A., Ruiz-Velasco, E., Saito, T., Sakurai, S., Sanchez, D. A., Sano, H., Šarić, T., Sato, Y., Saturni, F. G., Savchenko, V., Schiavone, F., Schleicher, B., Schmuckermaier, F., Schubert, J. L., Schussler, F., Schweizer, T., Arroyo, M. Seglar, Siegert, T., Sitarek, J., Sliusar, V., Strišković, J., Strzys, M., Suda, Y., Tajima, H., Takahashi, H., Takahashi, M., Takata, J., Takeishi, R., Tam, P. H. T., Tanaka, S. J., Tateishi, D., Tavernier, T., Temnikov, P., Terada, Y., Terauchi, K., Terzic, T., Teshima, M., Tluczykont, M., Tokanai, F., Torres, D. F., Travnicek, P., Tutone, A., Vacula, M., Vallania, P., van Scherpenberg, J., Acosta, M. Vázquez, Ventura, S., Verna, G., Viale, I., Vigliano, A., Vigorito, C. F., Visentin, E., Vitale, V., Voitsekhovskyi, V., Voutsinas, G., Vovk, I., Vuillaume, T., Walter, R., Wan, L., Will, M., Wójtowicz, J., Yamamoto, T., Yamazaki, R., Yeung, P. K. H., Yoshida, T., Yoshikoshi, T., Zhang, W., and Zywucka, N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Imaging atmospheric Cherenkov telescopes (IACTs) are used to observe very high-energy photons from the ground. Gamma rays are indirectly detected through the Cherenkov light emitted by the air showers they induce. The new generation of experiments, in particular the Cherenkov Telescope Array Observatory (CTAO), sets ambitious goals for discoveries of new gamma-ray sources and precise measurements of the already discovered ones. To achieve these goals, both hardware and data analysis must employ cutting-edge techniques. This also applies to the LST-1, the first IACT built for the CTAO, which is currently taking data on the Canary island of La Palma. This paper introduces a new event reconstruction technique for IACT data, aiming to improve the image reconstruction quality and the discrimination between the signal and the background from misidentified hadrons and electrons. The technique models the development of the extensive air shower signal, recorded as a waveform per pixel, seen by CTAO telescopes' cameras. Model parameters are subsequently passed to random forest regressors and classifiers to extract information on the primary particle. The new reconstruction was applied to simulated data and to data from observations of the Crab Nebula performed by the LST-1. The event reconstruction method presented here shows promising performance improvements. The angular and energy resolution, and the sensitivity, are improved by 10 to 20% over most of the energy range. At low energy, improvements reach up to 22%, 47%, and 50%, respectively. A future extension of the method to stereoscopic analysis for telescope arrays will be the next important step., Comment: Accepted in A&A
- Published
- 2024
15. Yeah, Un, Oh: Continuous and Real-time Backchannel Prediction with Fine-tuning of Voice Activity Projection
- Author
-
Inoue, Koji, Lala, Divesh, Skantze, Gabriel, and Kawahara, Tatsuya
- Subjects
Computer Science - Computation and Language ,Computer Science - Human-Computer Interaction ,Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
In human conversations, short backchannel utterances such as "yeah" and "oh" play a crucial role in facilitating smooth and engaging dialogue. These backchannels signal attentiveness and understanding without interrupting the speaker, making their accurate prediction essential for creating more natural conversational agents. This paper proposes a novel method for real-time, continuous backchannel prediction using a fine-tuned Voice Activity Projection (VAP) model. While existing approaches have relied on turn-based or artificially balanced datasets, our approach predicts both the timing and type of backchannels in a continuous and frame-wise manner on unbalanced, real-world datasets. We first pre-train the VAP model on a general dialogue corpus to capture conversational dynamics and then fine-tune it on a specialized dataset focused on backchannel behavior. Experimental results demonstrate that our model outperforms baseline methods in both timing and type prediction tasks, achieving robust performance in real-time environments. This research offers a promising step toward more responsive and human-like dialogue systems, with implications for interactive spoken dialogue applications such as virtual assistants and robots.
- Published
- 2024
16. Collaborative filtering based on nonnegative/binary matrix factorization
- Author
-
Terui, Yukino, Inoue, Yuka, Hamakawa, Yohei, Tatsumura, Kosuke, and Kudo, Kazue
- Subjects
Condensed Matter - Statistical Mechanics ,Computer Science - Information Retrieval ,Computer Science - Machine Learning - Abstract
Collaborative filtering generates recommendations based on user-item similarities through rating data, which may involve numerous unrated items. To predict scores for unrated items, matrix factorization techniques, such as nonnegative matrix factorization (NMF), are often employed to predict scores for unrated items. Nonnegative/binary matrix factorization (NBMF), which is an extension of NMF, approximates a nonnegative matrix as the product of nonnegative and binary matrices. Previous studies have employed NBMF for image analysis where the data were dense. In this paper, we propose a modified NBMF algorithm that can be applied to collaborative filtering where data are sparse. In the modified method, unrated elements in a rating matrix are masked, which improves the collaborative filtering performance. Utilizing a low-latency Ising machine in NBMF is advantageous in terms of the computation time, making the proposed method beneficial., Comment: 12 pages, 7 figures
- Published
- 2024
17. Generating Global and Local Explanations for Tree-Ensemble Learning Methods by Answer Set Programming
- Author
-
Takemura, Akihiro and Inoue, Katsumi
- Subjects
Computer Science - Artificial Intelligence - Abstract
We propose a method for generating rule sets as global and local explanations for tree-ensemble learning methods using Answer Set Programming (ASP). To this end, we adopt a decompositional approach where the split structures of the base decision trees are exploited in the construction of rules, which in turn are assessed using pattern mining methods encoded in ASP to extract explanatory rules. For global explanations, candidate rules are chosen from the entire trained tree-ensemble models, whereas for local explanations, candidate rules are selected by only considering rules that are relevant to the particular predicted instance. We show how user-defined constraints and preferences can be represented declaratively in ASP to allow for transparent and flexible rule set generation, and how rules can be used as explanations to help the user better understand the models. Experimental evaluation with real-world datasets and popular tree-ensemble algorithms demonstrates that our approach is applicable to a wide range of classification tasks. Under consideration in Theory and Practice of Logic Programming (TPLP)., Comment: Under consideration in Theory and Practice of Logic Programming (TPLP). Some parts of this paper were presented at ICLP 2021, and published in EPTCS 345, 2021, pp. 127-140, arXiv:2109.08290
- Published
- 2024
18. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
19. Can GPTs Evaluate Graphic Design Based on Design Principles?
- Author
-
Haraguchi, Daichi, Inoue, Naoto, Shimoda, Wataru, Mitani, Hayato, Uchida, Seiichi, and Yamaguchi, Kota
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Graphics - Abstract
Recent advancements in foundation models show promising capability in graphic design generation. Several studies have started employing Large Multimodal Models (LMMs) to evaluate graphic designs, assuming that LMMs can properly assess their quality, but it is unclear if the evaluation is reliable. One way to evaluate the quality of graphic design is to assess whether the design adheres to fundamental graphic design principles, which are the designer's common practice. In this paper, we compare the behavior of GPT-based evaluation and heuristic evaluation based on design principles using human annotations collected from 60 subjects. Our experiments reveal that, while GPTs cannot distinguish small details, they have a reasonably good correlation with human annotation and exhibit a similar tendency to heuristic metrics based on design principles, suggesting that they are indeed capable of assessing the quality of graphic design. Our dataset is available at https://cyberagentailab.github.io/Graphic-design-evaluation ., Comment: Accepted to SIGGRAPH Asia 2024 (Technical Communications Track)
- Published
- 2024
20. JWST/NIRSpec spectroscopy of intermediate-mass quiescent galaxies at $z \sim 3-4$
- Author
-
Sato, Riku A., Inoue, Akio K., Harikane, Yuichi, Shimakawa, Rhythm, Sugahara, Yuma, Tamura, Yoichi, Hashimoto, Takuya, Ito, Kei, Yamanaka, Satoshi, Mawatari, Ken, Fudamoto, Yoshinobu, and Ren, Yi W.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present the analysis of three intermediate-mass quiescent galaxies (QGs) with stellar masses of $\sim10^{10}M_{\rm \odot}$ at redshifts $z\sim 3 - 4$ using NIRSpec low-resolution spectroscopy. Utilising the SED fitting code BAGPIPES, we confirm these target galaxies are consistent with quiescent population, with their specific star formation rates (sSFR) falling below 2-dex the star-forming main sequence at the same redshifts. Additionally, we identify these QGs to be less massive than those discovered in previous works, particularly prior to the JWST era. Two of our target galaxies exhibit the potentially-blended H${\alpha}$+[NII] emission line within their spectra with $S/N>5$. We discuss whether this feature comes from an Active Galactic Nucleus (AGN) or star formation although future high-resolution spectroscopy is required to reach a conclusion. One of the target galaxies is covered by JWST/NIRCam imaging of the PRIMER survey. Using the 2D profile fitting code Galfit, we examine its morphology, revealing a disc-like profile with a S\'{e}rsic index of $n=1.1 \pm 0.1$. On the size-mass relation, we find a potential distinction between less-massive ($\log_{10}{(M_*/M_\odot)}<10.3$) and massive ($\log_{10}{(M_*/M_\odot)}>10.3$) QGs in their evolutionary pathways. The derived quenching timescales for our targets are less than 1 Gyr. This may result from these galaxies being quenched by AGN feedback, supporting the AGN scenario of the emission line features., Comment: MNRAS accepted
- Published
- 2024
- Full Text
- View/download PDF
21. First Very Long Baseline Interferometry Detections at 870{\mu}m
- Author
-
Raymond, Alexander W., Doeleman, Sheperd S., Asada, Keiichi, Blackburn, Lindy, Bower, Geoffrey C., Bremer, Michael, Broguiere, Dominique, Chen, Ming-Tang, Crew, Geoffrey B., Dornbusch, Sven, Fish, Vincent L., García, Roberto, Gentaz, Olivier, Goddi, Ciriaco, Han, Chih-Chiang, Hecht, Michael H., Huang, Yau-De, Janssen, Michael, Keating, Garrett K., Koay, Jun Yi, Krichbaum, Thomas P., Lo, Wen-Ping, Matsushita, Satoki, Matthews, Lynn D., Moran, James M., Norton, Timothy J., Patel, Nimesh, Pesce, Dominic W., Ramakrishnan, Venkatessh, Rottmann, Helge, Roy, Alan L., Sánchez, Salvador, Tilanus, Remo P. J., Titus, Michael, Torne, Pablo, Wagner, Jan, Weintroub, Jonathan, Wielgus, Maciek, Young, André, Akiyama, Kazunori, Albentosa-Ruíz, Ezequiel, Alberdi, Antxon, Alef, Walter, Algaba, Juan Carlos, Anantua, Richard, Azulay, Rebecca, Bach, Uwe, Baczko, Anne-Kathrin, Ball, David, Baloković, Mislav, Bandyopadhyay, Bidisha, Barrett, John, Bauböck, Michi, Benson, Bradford A., Bintley, Dan, Blundell, Raymond, Bouman, Katherine L., Boyce, Hope, Brissenden, Roger, Britzen, Silke, Broderick, Avery E., Bronzwaer, Thomas, Bustamante, Sandra, Carlstrom, John E., Chael, Andrew, Chan, Chi-kwan, Chang, Dominic O., Chatterjee, Koushik, Chatterjee, Shami, Chen, Yongjun, Cheng, Xiaopeng, Cho, Ilje, Christian, Pierre, Conroy, Nicholas S., Conway, John E., Crawford, Thomas M., Cruz-Osorio, Alejandro, Cui, Yuzhu, Dahale, Rohan, Davelaar, Jordy, De Laurentis, Mariafelicia, Deane, Roger, Dempsey, Jessica, Desvignes, Gregory, Dexter, Jason, Dhruv, Vedant, Dihingia, Indu K., Dzib, Sergio A., Eatough, Ralph P., Emami, Razieh, Falcke, Heino, Farah, Joseph, Fomalont, Edward, Fontana, Anne-Laure, Ford, H. Alyson, Foschi, Marianna, Fraga-Encinas, Raquel, Freeman, William T., Friberg, Per, Fromm, Christian M., Fuentes, Antonio, Galison, Peter, Gammie, Charles F., Georgiev, Boris, Gold, Roman, Gómez-Ruiz, Arturo I., Gómez, José L., Gu, Minfeng, Gurwell, Mark, Hada, Kazuhiro, Haggard, Daryl, Hesper, Ronald, Heumann, Dirk, Ho, Luis C., Ho, Paul, Honma, Mareki, Huang, Chih-Wei L., Huang, Lei, Hughes, David H., Ikeda, Shiro, Impellizzeri, C. M. Violette, Inoue, Makoto, Issaoun, Sara, James, David J., Jannuzi, Buell T., Jeter, Britton, Jiang, Wu, Jiménez-Rosales, Alejandra, Johnson, Michael D., Jorstad, Svetlana, Jones, Adam C., Joshi, Abhishek V., Jung, Taehyun, Karuppusamy, Ramesh, Kawashima, Tomohisa, Kettenis, Mark, Kim, Dong-Jin, Kim, Jae-Young, Kim, Jongsoo, Kim, Junhan, Kino, Motoki, Kocherlakota, Prashant, Kofuji, Yutaro, Koch, Patrick M., Koyama, Shoko, Kramer, Carsten, Kramer, Joana A., Kramer, Michael, Kubo, Derek, Kuo, Cheng-Yu, La Bella, Noemi, Lee, Sang-Sung, Levis, Aviad, Li, Zhiyuan, Lico, Rocco, Lindahl, Greg, Lindqvist, Michael, Lisakov, Mikhail, Liu, Jun, Liu, Kuo, Liuzzo, Elisabetta, Lobanov, Andrei P., Loinard, Laurent, Lonsdale, Colin J., Lowitz, Amy E., Lu, Ru-Sen, MacDonald, Nicholas R., Mahieu, Sylvain, Maier, Doris, Mao, Jirong, Marchili, Nicola, Markoff, Sera, Marrone, Daniel P., Marscher, Alan P., Martí-Vidal, Iván, Medeiros, Lia, Menten, Karl M., Mizuno, Izumi, Mizuno, Yosuke, Montgomery, Joshua, Moriyama, Kotaro, Moscibrodzka, Monika, Mulaudzi, Wanga, Müller, Cornelia, Müller, Hendrik, Mus, Alejandro, Musoke, Gibwa, Myserlis, Ioannis, Nagai, Hiroshi, Nagar, Neil M., Nakamura, Masanori, Narayanan, Gopal, Natarajan, Iniyan, Nathanail, Antonios, Fuentes, Santiago Navarro, Neilsen, Joey, Ni, Chunchong, Nowak, Michael A., Oh, Junghwan, Okino, Hiroki, Sánchez, Héctor Raúl Olivares, Oyama, Tomoaki, Özel, Feryal, Palumbo, Daniel C. M., Paraschos, Georgios Filippos, Park, Jongho, Parsons, Harriet, Pen, Ue-Li, Piétu, Vincent, PopStefanija, Aleksandar, Porth, Oliver, Prather, Ben, Principe, Giacomo, Psaltis, Dimitrios, Pu, Hung-Yi, Raffin, Philippe A., Rao, Ramprasad, Rawlings, Mark G., Ricarte, Angelo, Ripperda, Bart, Roelofs, Freek, Romero-Cañizales, Cristina, Ros, Eduardo, Roshanineshat, Arash, Ruiz, Ignacio, Ruszczyk, Chet, Rygl, Kazi L. J., Sánchez-Argüelles, David, Sánchez-Portal, Miguel, Sasada, Mahito, Satapathy, Kaushik, Savolainen, Tuomas, Schloerb, F. Peter, Schonfeld, Jonathan, Schuster, Karl-Friedrich, Shao, Lijing, Shen, Zhiqiang, Small, Des, Sohn, Bong Won, SooHoo, Jason, Salas, León David Sosapanta, Souccar, Kamal, Srinivasan, Ranjani, Stanway, Joshua S., Sun, He, Tazaki, Fumie, Tetarenko, Alexandra J., Tiede, Paul, Toma, Kenji, Toscano, Teresa, Traianou, Efthalia, Trent, Tyler, Trippe, Sascha, Turk, Matthew, van Bemmel, Ilse, van Langevelde, Huib Jan, van Rossum, Daniel R., Vos, Jesse, Ward-Thompson, Derek, Wardle, John, Washington, Jasmin E., Wharton, Robert, Wiik, Kaj, Witzel, Gunther, Wondrak, Michael F., Wong, George N., Wu, Qingwen, Yadlapalli, Nitika, Yamaguchi, Paul, Yfantis, Aristomenis, Yoon, Doosoo, Younsi, Ziri, Yu, Wei, Yuan, Feng, Yuan, Ye-Fei, Zensus, J. Anton, Zhang, Shuo, Zhao, Guang-Yao, and Zhao, Shan-Shan
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The first very long baseline interferometry (VLBI) detections at 870$\mu$m wavelength (345$\,$GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth, and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on inter-continental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in October 2018. The longest-baseline detections approach 11$\,$G$\lambda$ corresponding to an angular resolution, or fringe spacing, of 19$\mu$as. The Allan deviation of the visibility phase at 870$\mu$m is comparable to that at 1.3$\,$mm on the relevant integration time scales between 2 and 100$\,$s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870$\mu$m. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time., Comment: Corresponding author: S. Doeleman
- Published
- 2024
- Full Text
- View/download PDF
22. CubiX: Portable Wire-Driven Parallel Robot Connecting to and Utilizing the Environment
- Author
-
Inoue, Shintaro, Kawaharazuka, Kento, Suzuki, Temma, Yuzaki, Sota, Okada, Kei, and Inaba, Masayuki
- Subjects
Computer Science - Robotics - Abstract
A wire-driven parallel robot is a type of robotic system where multiple wires are used to control the movement of a end-effector. The wires are attached to the end-effector and anchored to fixed points on external structures. This configuration allows for the separation of actuators and end-effectors, enabling lightweight and simplified movable parts in the robot. However, its range of motion remains confined within the space formed by the wires, limiting the wire-driven capability to only within the pre-designed operational range. Here, in this study, we develop a wire-driven robot, CubiX, capable of connecting to and utilizing the environment. CubiX connects itself to the environment using up to 8 wires and drives itself by winding these wires. By integrating actuators for winding the wires into CubiX, a portable wire-driven parallel robot is realized without limitations on its workspace. Consequently, the robot can form parallel wire-driven structures by connecting wires to the environment at any operational location., Comment: Accepted at IROS2024, website - https://shin0805.github.io/cubix-hardware/ , YouTube - https://youtu.be/R5ZrzMPEFZs
- Published
- 2024
23. Disruption Risk Evaluation on Large-scale Production Network with Establishments and Products
- Author
-
Inoue, Hiroyasu and Todo, Yasuyuki
- Subjects
Computer Science - Social and Information Networks - Abstract
We constructed an establishment-level production network where each establishment inputs and outputs multiple products, using data that includes the firm-level production network and establishments covering nearly all Japanese entities. The network represents the manufacturing sector with 183,951 establishments across 157,537 firms and 919,982 inter-establishment linkages. A probabilistic model of supply chain disruptions was applied to this network. The key findings are as follows: (1) The establishment-level network exhibits greater shock propagation compared to the firm-level network. (2) Incorporating actual product information leads to a larger impact on propagation compared to using industry-level information. (3) Regional shock simulations reveal that while the firm-level network shows greater shock propagation when the shock originates in Tokyo, no such difference is observed in the establishment-level network.
- Published
- 2024
24. Multiwavelength Campaign Observations of a Young Solar-type Star, EK Draconis. II. Understanding Prominence Eruption through Data-Driven Modeling and Observed Magnetic Environment
- Author
-
Namekata, Kosuke, Ikuta, Kai, Petit, Pascal, Airapetian, Vladimir S., Vidotto, Aline A., Heinzel, Petr, Wollmann, Jiří, Maehara, Hiroyuki, Notsu, Yuta, Inoue, Shun, Marsden, Stephen, Morin, Julien, Jeffers, Sandra V., Neiner, Coralie, Paudel, Rishi R., Avramova-Boncheva, Antoaneta A., Gendreau, Keith, and Shibata, Kazunari
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
EK Draconis, a nearby young solar-type star (G1.5V, 50-120 Myr), is known as one of the best proxies for inferring the environmental conditions of the young Sun. The star frequently produces superflares and Paper I presented the first evidence of an associated gigantic prominence eruption observed as a blueshifted H$\alpha$ Balmer line emission. In this paper, we present the results of dynamical modeling of the stellar eruption and examine its relationship to the surface starspots and large-scale magnetic fields observed concurrently with the event. By performing a one-dimensional free-fall dynamical model and a one dimensional hydrodynamic simulation of the flow along the expanding magnetic loop, we found that the prominence eruption likely occurred near the stellar limb (12$^{+5}_{-5}$-16$^{+7}_{-7}$ degrees from the limb) and was ejected at an angle of 15$^{+6}_{-5}$-24$^{+6}_{-6}$ degrees relative to the line of sight, and the magnetic structures can expand into a coronal mass ejection (CME). The observed prominence displayed a terminal velocity of $\sim$0 km s$^{-1}$ prior to disappearance, complicating the interpretation of its dynamics in Paper I. The models in this paper suggest that prominence's H$\alpha$ intensity diminishes at around or before its expected maximum height, explaining the puzzling time evolution in observations. The TESS light curve modeling and (Zeeman) Doppler Imaging revealed large mid-latitude spots with polarity inversion lines and one polar spot with dominant single polarity, all near the stellar limb during the eruption. This suggests that mid-latitude spots could be the source of the pre-existing gigantic prominence we reported in Paper I. These results provide valuable insights into the dynamic processes that likely influenced the environments of early Earth, Mars, Venus, and young exoplanets., Comment: 25 pages, 14 figures, 5 tables. Accepted for publication in The Astrophysical Journal
- Published
- 2024
25. Revisiting In-context Learning Inference Circuit in Large Language Models
- Author
-
Cho, Hakaze, Kato, Mariko, Sakai, Yoshihiro, and Inoue, Naoya
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
In-context Learning (ICL) is an emerging few-shot learning paradigm on Language Models (LMs) with inner mechanisms un-explored. There are already existing works describing the inner processing of ICL, while they struggle to capture all the inference phenomena in large language models. Therefore, this paper proposes a comprehensive circuit to model the inference dynamics and try to explain the observed phenomena of ICL. In detail, we divide ICL inference into 3 major operations: (1) Summarize: LMs encode every input text (demonstrations and queries) into linear representation in the hidden states with sufficient information to solve ICL tasks. (2) Semantics Merge: LMs merge the encoded representations of demonstrations with their corresponding label tokens to produce joint representations of labels and demonstrations. (3) Feature Retrieval and Copy: LMs search the joint representations similar to the query representation on a task subspace, and copy the searched representations into the query. Then, language model heads capture these copied label representations to a certain extent and decode them into predicted labels. The proposed inference circuit successfully captured many phenomena observed during the ICL process, making it a comprehensive and practical explanation of the ICL inference process. Moreover, ablation analysis by disabling the proposed steps seriously damages the ICL performance, suggesting the proposed inference circuit is a dominating mechanism. Additionally, we confirm and list some bypass mechanisms that solve ICL tasks in parallel with the proposed circuit., Comment: 31 pages, 37 figures, 6 tables, ICLR 2025 under review
- Published
- 2024
26. Growth of Massive Molecular Cloud Filament by Accretion Flows. II. New Mechanism to Support a Supercritical Filament against Radial Collapse
- Author
-
Abe, Daisei, Inoue, Tsuyoshi, Inutsuka, Shu-ichiro, and Arzoumanian, Doris
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Observations indicate that dense molecular filamentary clouds are sites of star formation. The filament width determines the fragmentation scale and influences the stellar mass. Therefore, understanding the evolution of filaments and the origin of their properties is important for understanding star formation. Although observations show a universal width of 0.1 pc, theoretical studies predict the contraction of thermally supercritical filaments (> 17 Msun pc-1) due to radial collapse. Through non-ideal magnetohydrodynamics simulations with ambipolar diffusion, we explore the formation and evolution of filaments via slow-shock instability at the front of accretion flows. We reveal that ambipolar diffusion allows the gas in the filament to flow across the magnetic fields around the shock, forming dense blobs behind the concave points of the shock. The blobs transfer momentum that drives internal turbulence. We name this mechanism the "STORM" (Slow-shock-mediated Turbulent flOw Reinforced by Magnetic diffusion). The persistence and efficiency of the turbulence inside the filament are driven by the magnetic field and the ambipolar diffusion effect, respectively. The STORM sustains the width even when the filament reaches very large line masses (~ 100 Msun pc-1)., Comment: 26 pages, 20 figures
- Published
- 2024
27. HALL-E: Hierarchical Neural Codec Language Model for Minute-Long Zero-Shot Text-to-Speech Synthesis
- Author
-
Nishimura, Yuto, Hirose, Takumi, Ohi, Masanari, Nakayama, Hideki, and Inoue, Nakamasa
- Subjects
Electrical Engineering and Systems Science - Audio and Speech Processing ,Computer Science - Sound - Abstract
Recently, Text-to-speech (TTS) models based on large language models (LLMs) that translate natural language text into sequences of discrete audio tokens have gained great research attention, with advances in neural audio codec (NAC) models using residual vector quantization (RVQ). However, long-form speech synthesis remains a significant challenge due to the high frame rate, which increases the length of audio tokens and makes it difficult for autoregressive language models to generate audio tokens for even a minute of speech. To address this challenge, this paper introduces two novel post-training approaches: 1) Multi-Resolution Requantization (MReQ) and 2) HALL-E. MReQ is a framework to reduce the frame rate of pre-trained NAC models. Specifically, it incorporates multi-resolution residual vector quantization (MRVQ) module that hierarchically reorganizes discrete audio tokens through teacher-student distillation. HALL-E is an LLM-based TTS model designed to predict hierarchical tokens of MReQ. Specifically, it incorporates the technique of using MRVQ sub-modules and continues training from a pre-trained LLM-based TTS model. Furthermore, to promote TTS research, we create MinutesSpeech, a new benchmark dataset consisting of 40k hours of filtered speech data for training and evaluating speech synthesis ranging from 3s up to 180s. In experiments, we demonstrated the effectiveness of our approaches by applying our post-training framework to VALL-E. We achieved the frame rate down to as low as 8 Hz, enabling the stable minitue-long speech synthesis in a single inference step. Audio samples, dataset, codes and pre-trained models are available at https://yutonishimura-v2.github.io/HALL-E_DEMO/.
- Published
- 2024
28. A long-duration superflare on the K giant HD 251108
- Author
-
Günther, Hans Moritz, Pasham, Dheeraj, Binks, Alexander, Czesla, Stefan, Enoto, Teruaki, Fausnaugh, Michael, Hambsch, Franz-Josef, Inoue, Shun, Maehara, Hiroyuki, Notsu, Yuta, Robrade, Jan, Schmitt, J. H. M. M., and Schneider, P. C.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Many giant stars are magnetically active, which causes rotational variability, chromospheric emission lines, and X-ray emission. Large outbursts in these emission features can set limits on the magnetic field strength and thus constrain the mechanism of the underlying dynamo. HD~251108 is a Li-rich active K-type giant. We find a rotational period of 21.3~d with color changes and additional long-term photometric variability. Both can be explained with very stable stellar spots. We followed the decay phase of a superflare for 28 days with NICER and from the ground. We track the flare decay in unprecedented detail in several coronal temperature components. With a peak flux around $10^{34}$~erg~s$^{-1}$ (0.5-4.0~keV) and an exponential decay time of 2.2~days in the early decay phase, this is one of the strongest flares ever observed; yet it follows trends established from samples of smaller flares, for example for the relations between H$\alpha$ and X-ray flux, indicating that the physical process that powers the flare emission is consistent over a large range of flare energies. We estimate a flare loop length about 2-4 times the stellar radius. No evidence is seen for abundance changes during the flare., Comment: submitted to ApJ, one electronic figures and data will be available with the journal publication. The version on arXiv contains a static image of that figure
- Published
- 2024
29. Analysis and Detection of Differences in Spoken User Behaviors between Autonomous and Wizard-of-Oz Systems
- Author
-
Elmers, Mikey, Inoue, Koji, Lala, Divesh, Ochi, Keiko, and Kawahara, Tatsuya
- Subjects
Computer Science - Computation and Language ,Computer Science - Human-Computer Interaction ,Computer Science - Robotics - Abstract
This study examined users' behavioral differences in a large corpus of Japanese human-robot interactions, comparing interactions between a tele-operated robot and an autonomous dialogue system. We analyzed user spoken behaviors in both attentive listening and job interview dialogue scenarios. Results revealed significant differences in metrics such as speech length, speaking rate, fillers, backchannels, disfluencies, and laughter between operator-controlled and autonomous conditions. Furthermore, we developed predictive models to distinguish between operator and autonomous system conditions. Our models demonstrated higher accuracy and precision compared to the baseline model, with several models also achieving a higher F1 score than the baseline., Comment: Accepted and will be presented at the 27th conference of the Oriental COCOSDA (O-COCOSDA 2024)
- Published
- 2024
30. The Disk Wind Contribution to the Gamma-Ray emission from the nearby Seyfert Galaxy GRS 1734-292
- Author
-
Sakai, Nobuyuki, Yamada, Tomoya, Inoue, Yoshiyuki, Owen, Ellis R., Michiyama, Tomonari, Tomaru, Ryota, and Fukazawa, Yasushi
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Astrophysics of Galaxies - Abstract
Radio-quiet Seyfert galaxies have been detected in GeV gamma-rays by the Fermi Large Area Telescope (LAT), but the origin of much of this emission is unclear. We consider the nearby example, the Seyfert galaxy GRS 1734-292, which exhibits weak starburst and jet activities that are insufficient to explain the observed gamma-ray flux. With the first detailed multi-wavelength study of this source, we demonstrate that an active galactic nucleus (AGN) disk wind can account for its gamma-ray emission. Using a lepto-hadronic emission model based on a shocked ambient medium and a shocked wind region created by an AGN accretion disk wind, we identify two viable scenarios that are consistent with the Fermi-LAT data and multi-wavelength observations: a hadronic pp-dominated scenario and a leptonic external Compton-dominated scenario. Both of these show that future observations with the Cherenkov Telescope Array (CTA) and the Southern Wide-field Gamma-ray Observatory (SWGO) could detect TeV emission from a disk wind in GRS 1734-292. Such a detection would substantially improve our understanding of cosmic ray acceleration efficiency in AGN disk wind systems, and would establish radio-quiet Seyfert galaxies as cosmic ray accelerators capable of reaching ultra-high energies., Comment: 8 pages, 2 figures, 1 table
- Published
- 2024
31. Manifold-based transformation of the probability distribution for convergence in optimization
- Author
-
Oroguchi, Tomotaka, Inoue, Rintaro, and Sugiyama, Masaaki
- Subjects
Physics - Data Analysis, Statistics and Probability ,Condensed Matter - Statistical Mechanics ,Physics - Biological Physics - Abstract
Reconstructing probability distributions from experimental data is a crucial problem across various fields. An effective approach is to optimize a theoretical or computational model of the distribution under an objective functional that evaluates consistency with the experimental data. However, achieving convergence in optimization remains a challenge. Given the manifold structure of the probability distribution space, we demonstrate that transformation of distribution in optimization should be infinitesimal displacements along exponential geodesics. Our theory was validated through the reconstruction of protein conformational ensembles, showing its broad applicability., Comment: 30 pages, 10 figures
- Published
- 2024
32. Limits on the Low-Energy Electron Antineutrino Flux from the Brightest GRB of All Time
- Author
-
Araki, T., Chauhan, S., Chiba, K., Eda, T., Eizuka, M., Funahashi, Y., Furuto, A., Gando, A., Gando, Y., Goto, S., Hachiya, T., Hata, K., Ichimura, K., Ikeda, H., Inoue, K., Ishidoshiro, K., Kamei, Y., Kawada, N., Kishimoto, Y., Koga, M., Marthe, A., Matsumoto, Y., Mitsui, T., Miyake, H., Morita, D., Nakajima, R., Nakamura, K., Nakamura, R., Nakane, J., Ono, T., Ozaki, H., Saito, K., Sakai, T., Shimizu, I., Shirai, J., Shiraishi, K., Suzuki, A., Tachibana, K., Tamae, K., Watanabe, H., Watanabe, K., Kurosawa, S., Urano, Y., Yoshida, S., Umehara, S., Fushimi, K., Kotera, K., Berger, B. E., Fujikawa, B. K., Learned, J. G., Maricic, J., Fu, Z., Ghosh, S., Smolsky, J., Winslow, L. A., Efremenko, Y., Karwowski, H. J., Markoff, D. M., Tornow, W., Delloro, S., Odonnell, T., Detwiler, J. A., Enomoto, S., Decowski, M. P., Weerman, K. M., Grant, C., Penek, Ö., Song, H., Li, A., Axani, S. N., Garcia, M., and Sarfraz, M.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The electron antinuetrino flux limits are presented for the brightest gamma-ray burst (GRB) of all time, GRB221009A, over a range of 1.8-200 MeV using the Kamioka Liquid Scintillator Anti Neutrino Detector (KamLAND). Using a variety of time windows to search for electron antineutrinos coincident with the GRB, we set an upper limit on the flux under the assumption of various neutrino source spectra. No excess was observed in any time windows ranging from seconds to days around the event trigger time. The limits are compared to the results presented by IceCube., Comment: 8 pages, 3 figures, 1 table
- Published
- 2024
33. Multimodal Markup Document Models for Graphic Design Completion
- Author
-
Kikuchi, Kotaro, Inoue, Naoto, Otani, Mayu, Simo-Serra, Edgar, and Yamaguchi, Kota
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Computer Science - Multimedia - Abstract
This paper presents multimodal markup document models (MarkupDM) that can generate both markup language and images within interleaved multimodal documents. Unlike existing vision-and-language multimodal models, our MarkupDM tackles unique challenges critical to graphic design tasks: generating partial images that contribute to the overall appearance, often involving transparency and varying sizes, and understanding the syntax and semantics of markup languages, which play a fundamental role as a representational format of graphic designs. To address these challenges, we design an image quantizer to tokenize images of diverse sizes with transparency and modify a code language model to process markup languages and incorporate image modalities. We provide in-depth evaluations of our approach on three graphic design completion tasks: generating missing attribute values, images, and texts in graphic design templates. Results corroborate the effectiveness of our MarkupDM for graphic design tasks. We also discuss the strengths and weaknesses in detail, providing insights for future research on multimodal document generation., Comment: Project page: https://cyberagentailab.github.io/MarkupDM/
- Published
- 2024
34. Robotic Backchanneling in Online Conversation Facilitation: A Cross-Generational Study
- Author
-
Kobuki, Sota, Seaborn, Katie, Tokunaga, Seiki, Fukumori, Kosuke, Hidaka, Shun, Tamura, Kazuhiro, Inoue, Koji, Kawahara, Tatsuya, and Otake-Mastuura, Mihoko
- Subjects
Computer Science - Robotics ,Computer Science - Computation and Language ,Computer Science - Human-Computer Interaction - Abstract
Japan faces many challenges related to its aging society, including increasing rates of cognitive decline in the population and a shortage of caregivers. Efforts have begun to explore solutions using artificial intelligence (AI), especially socially embodied intelligent agents and robots that can communicate with people. Yet, there has been little research on the compatibility of these agents with older adults in various everyday situations. To this end, we conducted a user study to evaluate a robot that functions as a facilitator for a group conversation protocol designed to prevent cognitive decline. We modified the robot to use backchannelling, a natural human way of speaking, to increase receptiveness of the robot and enjoyment of the group conversation experience. We conducted a cross-generational study with young adults and older adults. Qualitative analyses indicated that younger adults perceived the backchannelling version of the robot as kinder, more trustworthy, and more acceptable than the non-backchannelling robot. Finally, we found that the robot's backchannelling elicited nonverbal backchanneling in older participants., Comment: Published at Proceedings of the 2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2023)
- Published
- 2024
- Full Text
- View/download PDF
35. Design and experimental demonstration of photonic-crystal lasers with multijunction active layers
- Author
-
Katsuno, Shumpei, Yoshida, Masahiro, Inoue, Takuya, De Zoysa, Menaka, Hatsuda, Ranko, Ishizaki, Kenji, and Noda, Susumu
- Subjects
Physics - Optics ,Physics - Applied Physics - Abstract
We introduce multijunction active layers, featuring a stack of alternating active layers and tunnel junctions, to PCSELs to increase their slope efficiency, which is vital for various applications including laser processing and LiDAR. First, we design a multijunction PCSEL that avoids optical absorption in the heavily-doped tunnel junctions while allowing sufficient optical gain and resonance effects in the active and photonic crystal layers. Next, we fabricate a 3-mm-diameter two-junction PCSEL, achieving a slope efficiency of 1.58 W/A, which is over twice as high as that of conventional single-junction PCSELs, and a record-high peak output power of 1.8 kW for PCSELs., Comment: 11 pages, 4 figures, 1 table
- Published
- 2024
36. MEVIUS: A Quadruped Robot Easily Constructed through E-Commerce with Sheet Metal Welding and Machining
- Author
-
Kawaharazuka, Kento, Inoue, Shintaro, Suzuki, Temma, Yuzaki, Sota, Sawaguchi, Shogo, Okada, Kei, and Inaba, Masayuki
- Subjects
Computer Science - Robotics - Abstract
Quadruped robots that individual researchers can build by themselves are crucial for expanding the scope of research due to their high scalability and customizability. These robots must be easily ordered and assembled through e-commerce or DIY methods, have a low number of components for easy maintenance, and possess durability to withstand experiments in diverse environments. Various quadruped robots have been developed so far, but most robots that can be built by research institutions are relatively small and made of plastic using 3D printers. These robots cannot withstand experiments in external environments such as mountain trails or rubble, and they will easily break with intense movements. Although there is the advantage of being able to print parts by yourself, the large number of components makes replacing broken parts and maintenance very cumbersome. Therefore, in this study, we develop a metal quadruped robot MEVIUS, that can be constructed and assembled using only materials ordered through e-commerce. We have considered the minimum set of components required for a quadruped robot, employing metal machining, sheet metal welding, and off-the-shelf components only. Also, we have achieved a simple circuit and software configuration. Considering the communication delay due to its simple configuration, we experimentally demonstrate that MEVIUS, utilizing reinforcement learning and Sim2Real, can traverse diverse rough terrains and withstand outside experiments. All hardware and software components can be obtained from https://github.com/haraduka/mevius., Comment: Accepted at Humanoids2024, website - https://haraduka.github.io/mevius-hardware/
- Published
- 2024
37. Protein-Mamba: Biological Mamba Models for Protein Function Prediction
- Author
-
Xu, Bohao, Lu, Yingzhou, Inoue, Yoshitaka, Lee, Namkyeong, Fu, Tianfan, and Chen, Jintai
- Subjects
Computer Science - Machine Learning ,Quantitative Biology - Biomolecules ,Quantitative Biology - Quantitative Methods - Abstract
Protein function prediction is a pivotal task in drug discovery, significantly impacting the development of effective and safe therapeutics. Traditional machine learning models often struggle with the complexity and variability inherent in predicting protein functions, necessitating more sophisticated approaches. In this work, we introduce Protein-Mamba, a novel two-stage model that leverages both self-supervised learning and fine-tuning to improve protein function prediction. The pre-training stage allows the model to capture general chemical structures and relationships from large, unlabeled datasets, while the fine-tuning stage refines these insights using specific labeled datasets, resulting in superior prediction performance. Our extensive experiments demonstrate that Protein-Mamba achieves competitive performance, compared with a couple of state-of-the-art methods across a range of protein function datasets. This model's ability to effectively utilize both unlabeled and labeled data highlights the potential of self-supervised learning in advancing protein function prediction and offers a promising direction for future research in drug discovery.
- Published
- 2024
38. First operation of LArTPC in the stratosphere as an engineering GRAMS balloon flight (eGRAMS)
- Author
-
Nakajima, R., Arai, S., Aoyama, K., Utsumi, Y., Tamba, T., Odaka, H., Tanaka, M., Yorita, K., Aramaki, T., Asaadi, J., Bamba, A., Cannady, N., Coppi, P., De Nolfo, G., Errando, M., Fabris, L., Fujiwara, T., Fukazawa, Y., Ghosh, P., Hagino, K., Hakamata, T., Hijikata, U., Hiroshima, N., Ichihashi, M., Ichinohe, Y., Inoue, Y., Ishikawa, K., Ishiwata, K., Iwata, T., Karagiorgi, G., Kato, T., Kawamura, H., Krizmanic, J., Leyva, J., Malige, A., Mitchell, J. G., Mitchell, J. W., Mukherjee, R., Nakazawa, K., Okuma, K., Perez, K., Poudyal, N., Safa, I., Sasaki, M., Seligman, W., Shirahama, K., Shiraishi, T., Smith, S., Suda, Y., Suraj, A., Takahashi, H., Takashima, S., Tandon, S., Tatsumi, R., Tomsick, J., Tsuji, N., Uchida, Y., Watanabe, S., Yano, Y., Yawata, K., Yoneda, H., Yoshimoto, M., and Zeng, J.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
GRAMS (Gamma-Ray and AntiMatter Survey) is a next-generation balloon/satellite experiment utilizing a LArTPC (Liquid Argon Time Projection Chamber), to simultaneously target astrophysical observations of cosmic MeV gamma-rays and conduct an indirect dark matter search using antimatter. While LArTPCs are widely used in particle physics experiments, they have never been operated at balloon altitudes. An engineering balloon flight with a small-scale LArTPC (eGRAMS) was conducted on July 27th, 2023, to establish a system for safely operating a LArTPC at balloon altitudes and to obtain cosmic-ray data from the LArTPC. The flight was launched from the Japan Aerospace Exploration Agency's (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The total flight duration was 3 hours and 12 minutes, including a level flight of 44 minutes at a maximum altitude of 28.9~km. The flight system was landed on the sea and successfully recovered. The LArTPC was successfully operated throughout the flight, and about 0.5 million events of the cosmic-ray data including muons, protons, and Compton scattering gamma-ray candidates, were collected. This pioneering flight demonstrates the feasibility of operating a LArTPC in high-altitude environments, paving the way for future GRAMS missions and advancing our capabilities in MeV gamma-ray astronomy and dark matter research.
- Published
- 2024
39. Formula-Supervised Visual-Geometric Pre-training
- Author
-
Yamada, Ryosuke, Hara, Kensho, Kataoka, Hirokatsu, Makihara, Koshi, Inoue, Nakamasa, Yokota, Rio, and Satoh, Yutaka
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Throughout the history of computer vision, while research has explored the integration of images (visual) and point clouds (geometric), many advancements in image and 3D object recognition have tended to process these modalities separately. We aim to bridge this divide by integrating images and point clouds on a unified transformer model. This approach integrates the modality-specific properties of images and point clouds and achieves fundamental downstream tasks in image and 3D object recognition on a unified transformer model by learning visual-geometric representations. In this work, we introduce Formula-Supervised Visual-Geometric Pre-training (FSVGP), a novel synthetic pre-training method that automatically generates aligned synthetic images and point clouds from mathematical formulas. Through cross-modality supervision, we enable supervised pre-training between visual and geometric modalities. FSVGP also reduces reliance on real data collection, cross-modality alignment, and human annotation. Our experimental results show that FSVGP pre-trains more effectively than VisualAtom and PC-FractalDB across six tasks: image and 3D object classification, detection, and segmentation. These achievements demonstrate FSVGP's superior generalization in image and 3D object recognition and underscore the potential of synthetic pre-training in visual-geometric representation learning. Our project website is available at https://ryosuke-yamada.github.io/fdsl-fsvgp/., Comment: Accepted to ECCV2024
- Published
- 2024
40. Should RAG Chatbots Forget Unimportant Conversations? Exploring Importance and Forgetting with Psychological Insights
- Author
-
Sumida, Ryuichi, Inoue, Koji, and Kawahara, Tatsuya
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
While Retrieval-Augmented Generation (RAG) has shown promise in enhancing long-term conversations, the increasing memory load as conversations progress degrades retrieval accuracy. Drawing on psychological insights, we propose LUFY, a simple yet effective method that focuses on emotionally arousing memories and retains less than 10% of the conversation. In the user experiment, participants interacted with three types of RAG chatbots, each for 2 hours over 4 sessions, marking the most extensive assessment of a chatbot's long-term capabilities to date -- more than four times longer than any existing benchmark. The results demonstrate that prioritizing arousing memories while forgetting the majority of the conversation significantly enhances user experience. This study pushes the frontier of long-term conversations and highlights the importance of forgetting unimportant parts of conversations. Code and Dataset: https://github.com/ryuichi-sumida/LUFY
- Published
- 2024
41. MacST: Multi-Accent Speech Synthesis via Text Transliteration for Accent Conversion
- Author
-
Inoue, Sho, Wang, Shuai, Wang, Wanxing, Zhu, Pengcheng, Bi, Mengxiao, and Li, Haizhou
- Subjects
Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
In accented voice conversion or accent conversion, we seek to convert the accent in speech from one another while preserving speaker identity and semantic content. In this study, we formulate a novel method for creating multi-accented speech samples, thus pairs of accented speech samples by the same speaker, through text transliteration for training accent conversion systems. We begin by generating transliterated text with Large Language Models (LLMs), which is then fed into multilingual TTS models to synthesize accented English speech. As a reference system, we built a sequence-to-sequence model on the synthetic parallel corpus for accent conversion. We validated the proposed method for both native and non-native English speakers. Subjective and objective evaluations further validate our dataset's effectiveness in accent conversion studies., Comment: Project page with Speech Demo: https://github.com/shinshoji01/MacST-project-page
- Published
- 2024
42. An Empirical Analysis of Git Commit Logs for Potential Inconsistency in Code Clones
- Author
-
Yokomori, Reishi and Inoue, Katsuro
- Subjects
Computer Science - Software Engineering - Abstract
Code clones are code snippets that are identical or similar to other snippets within the same or different files. They are often created through copy-and-paste practices and modified during development and maintenance activities. Since a pair of code clones, known as a clone pair, has a possible logical coupling between them, it is expected that changes to each snippet are made simultaneously (co-changed) and consistently. There is extensive research on code clones, including studies related to the co-change of clones; however, detailed analysis of commit logs for code clone pairs has been limited. In this paper, we investigate the commit logs of code snippets from clone pairs, using the git-log command to extract changes to cloned code snippets. We analyzed 45 repositories owned by the Apache Software Foundation on GitHub and addressed three research questions regarding commit frequency, co-change ratio, and commit patterns. Our findings indicate that (1) on average, clone snippets are changed infrequently, typically only two or three times throughout their lifetime, (2) the ratio of co-changes is about half of all clone changes, with 10-20\% of co-changed commits being concerning (potentially inconsistent), and (3) 35-65\% of all clone pairs being classified as concerning clone pairs (potentially inconsistent clone pairs). These results suggest the need for a consistent management system through the commit timeline of clones., Comment: Preprint of SCAM2024 (IEEE International Conference on Source Code Analysis & Manipulation) in Flagstaff, AZ. on Oct. 7-8, 2024. 10-page main body + 2-page references
- Published
- 2024
43. C3-VQA: Cryogenic Counter-based Co-processor for Variational Quantum Algorithms
- Author
-
Ueno, Yosuke, Imamura, Satoshi, Tomida, Yuna, Tanimoto, Teruo, Tanaka, Masamitsu, Tabuchi, Yutaka, Inoue, Koji, and Nakamura, Hiroshi
- Subjects
Quantum Physics ,Computer Science - Hardware Architecture ,Computer Science - Emerging Technologies - Abstract
Cryogenic quantum computers play a leading role in demonstrating quantum advantage. Given the severe constraints on the cooling capacity in cryogenic environments, thermal design is crucial for the scalability of these computers. The sources of heat dissipation include passive inflow via inter-temperature wires and the power consumption of components located in the cryostat, such as wire amplifiers and quantum-classical interfaces. Thus, a critical challenge is to reduce the number of wires by reducing the required inter-temperature bandwidth while maintaining minimal additional power consumption in the cryostat. One solution to address this challenge is near-data processing using ultra-low-power computational logic within the cryostat. Based on the workload analysis and domain-specific system design focused on Variational Quantum Algorithms (VQAs), we propose the Cryogenic Counter-based Co-processor for VQAs (C3-VQA) to enhance the design scalability of cryogenic quantum computers under the thermal constraint. The C3-VQA utilizes single-flux-quantum logic, which is an ultra-low-power superconducting digital circuit that operates at the 4 K environment. The C3-VQA precomputes a part of the expectation value calculations for VQAs and buffers intermediate values using simple bit operation units and counters in the cryostat, thereby reducing the required inter-temperature bandwidth with small additional power consumption. Consequently, the C3-VQA reduces the number of wires, leading to a reduction in the total heat dissipation in the cryostat. Our evaluation shows that the C3-VQA reduces the total heat dissipation at the 4 K stage by 30% and 81% under sequential-shot and parallel-shot execution scenarios, respectively. Furthermore, a case study in quantum chemistry shows that the C3-VQA reduces total heat dissipation by 87% with a 10,000-qubit system., Comment: 15 pages, 9 figures, 5 tables. This is an extention of arXiv:2403.00363 and arXiv:2310.01630
- Published
- 2024
44. Training Spiking Neural Networks via Augmented Direct Feedback Alignment
- Author
-
Zhang, Yongbo, Inoue, Katsuma, Nakajima, Mitsumasa, Hashimoto, Toshikazu, Kuniyoshi, Yasuo, and Nakajima, Kohei
- Subjects
Computer Science - Neural and Evolutionary Computing ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Spiking neural networks (SNNs), the models inspired by the mechanisms of real neurons in the brain, transmit and represent information by employing discrete action potentials or spikes. The sparse, asynchronous properties of information processing make SNNs highly energy efficient, leading to SNNs being promising solutions for implementing neural networks in neuromorphic devices. However, the nondifferentiable nature of SNN neurons makes it a challenge to train them. The current training methods of SNNs that are based on error backpropagation (BP) and precisely designing surrogate gradient are difficult to implement and biologically implausible, hindering the implementation of SNNs on neuromorphic devices. Thus, it is important to train SNNs with a method that is both physically implementatable and biologically plausible. In this paper, we propose using augmented direct feedback alignment (aDFA), a gradient-free approach based on random projection, to train SNNs. This method requires only partial information of the forward process during training, so it is easy to implement and biologically plausible. We systematically demonstrate the feasibility of the proposed aDFA-SNNs scheme, propose its effective working range, and analyze its well-performing settings by employing genetic algorithm. We also analyze the impact of crucial features of SNNs on the scheme, thus demonstrating its superiority and stability over BP and conventional direct feedback alignment. Our scheme can achieve competitive performance without accurate prior knowledge about the utilized system, thus providing a valuable reference for physically training SNNs., Comment: 20 pages, 8 figures, 2 tables
- Published
- 2024
45. Attosecond Inner-Shell Lasing at Angstrom Wavelengths
- Author
-
Linker, Thomas M., Halavanau, Aliaksei, Kroll, Thomas, Benediktovitch, Andrei, Zhang, Yu, Michine, Yurina, Chuchurka, Stasis, Abhari, Zain, Ronchetti, Daniele, Fransson, Thomas, Weninger, Clemens, Fuller, Franklin D., Aquila, Andy, Alonso-Mori, Roberto, Boutet, Sebastien, Guetg, Marc W., Marinelli, Agostino, Lutman, Alberto A., Yabashi, Makina, Inoue, Ichiro, Osaka, Taito, Yamada, Jumpei, Inubushi, Yuichi, Yamaguchi, Gota, Hara, Toru, Babu, Ganguli, Salpekar, Devashish, Sayed, Farheen N., Ajayan, Pulickel M., Kern, Jan, Yano, Junko, Yachandra, Vittal K., Kling, Matthias F., Pellegrini, Claudio, Yoneda, Hitoki, Rohringer, Nina, and Bergmann, Uwe
- Subjects
Physics - Optics ,Physics - Atomic Physics - Abstract
Since the invention of the laser nonlinear effects such as filamentation, Rabi-cycling and collective emission have been explored in the optical regime leading to a wide range of scientific and industrial applications. X-ray free electron lasers (XFELs) have led to the extension of many optical techniques to X-rays for their advantages of angstrom scale spatial resolution and elemental specificity. One such example is XFEL driven population inversion of 1s core hole states resulting in inner-shell K${\alpha}$ (2p to 1s) X-ray lasing in elements ranging from neon to copper, which has been utilized for nonlinear spectroscopy and development of next generation X-ray laser sources. Here we show that strong lasing effects, similar to those observed in the optical regime, can occur at 1.5 to 2.1 angstrom wavelengths during high intensity (> ${10^{19}}$ W/cm${^{2}}$) XFEL driven inner-shell lasing and superfluorescence of copper and manganese. Depending on the temporal substructure of the XFEL pump pulses, the resulting inner-shell X-ray laser pulses can exhibit strong spatial inhomogeneities as well as spectral inhomogeneities and broadening. Through 3D Maxwell Bloch theory we show that the observed spatial inhomogeneities result from X-ray filamentation, and that the spectral broadening is driven by Rabi cycling with sub-femtosecond periods. These findings indicate that we have generated Angstrom-wavelength x-ray pulses (containing ${10^{6}}$ - ${10^{8}}$ photons) in the strong lasing regime, some of them with pulse lengths of less than 100 attoseconds.
- Published
- 2024
46. Market Reaction to News Flows in Supply Chain Networks
- Author
-
Inoue, Hiroyasu and Todo, Yasuyuki
- Subjects
Computer Science - Social and Information Networks ,Computer Science - Machine Learning - Abstract
This study examines whether positive news about firms increases their stock prices and, moreover, whether it increases stock prices of the firms' suppliers and customers, using a large sample of publicly listed firms across the world and another of Japanese listed firms. The level of positiveness of each news article is determined by FinBERT, a natural language processing model fine-tuned specifically for financial information. Supply chains of firms across the world are identified mostly by financial statements, while those of Japanese firms are taken from large-scale firm-level surveys. We find that positive news increases the change rate of stock prices of firms mentioned in the news before its disclosure, most likely because of diffusion of information through informal channels. Positive news also raises stock prices of the firms' suppliers and customers before its disclosure, confirming propagation of market values through supply chains. In addition, we generally find a larger post-news effect on stock prices of the mentioned firms and their suppliers and customers than the pre-news effect. The positive difference between the post- and pre-news effects can be considered as the net effect of the disclosure of positive news, controlling for informal information diffusion. However, the post-news effect on suppliers and customers in Japan is smaller than the pre-news effect, a result opposite to those from firms across the world. This notable result is possibly because supply chain links of Japanese firms are stronger than global supply chains while such knowledge is restricted to selected investors.
- Published
- 2024
47. LIGO Detector Characterization in the first half of the fourth Observing run
- Author
-
Soni, S., Berger, B. K., Davis, D., Renzo, F. Di., Effler, A., Ferreira, T. A., Glanzer, J., Goetz, E., González, G., Helmling-Cornell, A., Hughey, B., Huxford, R., Mannix, B., Mo, G., Nandi, D., Neunzert, A., Nichols, S., Pham, K., Renzini, A. I., Schofield, R. M. S., Stuver, A, Trevor, M., Álvarez-López, S., Beda, R., Berry, C. P. L., Bhuiyan, S., Bruntz, R., Christensen, N., Blagg, L., Chan, M., Charlton, P., Connolly, G., Dhatri, R., Ding, J., Garg, V., Holley-Bockelmann, K., Hourihane, S., Jani, K., Janssens, K., Jarov, S., Knee, A. M., Lattal, A., Lecoeuche, Y., Littenberg, T., Liyanage, A., Lott, B., Macas, R., Malakar, D., McGowan, K., McIver, J., Millhouse, M., Nuttall, L., Nykamp, D., Ota, I., Rawcliffe, C., Scully, B., Tasson, J., Tejera, A., Thiele, S., Udall, R., Winborn, C., Yarbrough, Z., Zhang, Z., Abbott, R., Abouelfettouh, I., Adhikari, R. X., Ananyeva, A., Appert, S., Arai, K., Aritomi, N., Aston, S. M., Ball, M., Ballmer, S. W., Barker, D., Barsotti, L., Betzwieser, J., Billingsley, G., Biscans, S., Bode, N., Bonilla, E., Bossilkov, V., Branch, A., Brooks, A. F., Brown, D. D., Bryant, J., Cahillane, C., Cao, H., Capote, E., Clara, F., Collins, J., Compton, C. M., Cottingham, R., Coyne, D. C., Crouch, R., Csizmazia, J., Cullen, T. J., Dartez, L. P., Demos, N., Dohmen, E., Driggers, J. C., Dwyer, S. E., Ejlli, A., Etzel, T., Evans, M., Feicht, J., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fulda, P., Fyffe, M., Ganapathy, D., Gateley, B., Giaime, J. A., Giardina, K. D., Goetz, R., Goodwin-Jones, A. W., Gras, S., Gray, C., Griffith, D., Grote, H., Guidry, T., Hall, E. D., Hanks, J., Hanson, J., Heintze, M. C., Holland, N. A., Hoyland, D., Huang, H. Y., Inoue, Y., James, A. L., Jennings, A., Jia, W., Karat, S., Karki, S., Kasprzack, M., Kawabe, K., Kijbunchoo, N., King, P. J., Kissel, J. S., Komori, K., Kontos, A., Kumar, Rahul, Kuns, K., Landry, M., Lantz, B., Laxen, M., Lee, K., Lesovsky, M., Llamas, F., Lormand, M., Loughlin, H. A., MacInnis, M., Makarem, C. N., Mansell, G. L., Martin, R. M., Mason, K., Matichard, F., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McRae, T., Mera, F., Merilh, E. L., Meylahn, F., Mittleman, R., Moraru, D., Moreno, G., Mullavey, A., Nakano, M., Nelson, T. J. N., Notte, J., Oberling, J., O'Hanlon, T., Osthelder, C., Ottaway, D. J., Overmier, H., Parker, W., Pele, A., Pham, H., Pirello, M., Quetschke, V., Ramirez, K. E., Reyes, J., Richardson, J. W., Robinson, M., Rollins, J. G., Romel, C. L., Romie, J. H., Ross, M. P., Ryan, K., Sadecki, T., Sanchez, A., Sanchez, E. J., Sanchez, L. E., Savage, R. L., Schaetzl, D., Schiworski, M. G., Schnabel, R., Schwartz, E., Sellers, D., Shaffer, T., Short, R. W., Sigg, D., Slagmolen, B. J. J., Soike, C., Srivastava, V., Sun, L., Tanner, D. B., Thomas, M., Thomas, P., Thorne, K. A., Torrie, C. I., Traylor, G., Ubhi, A. S., Vajente, G., Vanosky, J., Vecchio, A., Veitch, P. J., Vibhute, A. M., von Reis, E. R. G., Warner, J., Weaver, B., Weiss, R., Whittle, C., Willke, B., Wipf, C. C., Xu, V. A., Yamamoto, H., Zhang, L., and Zucker, M. E.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,General Relativity and Quantum Cosmology - Abstract
Progress in gravitational-wave astronomy depends upon having sensitive detectors with good data quality. Since the end of the LIGO-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of gravitational-wave candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study gravitational-waves. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs., Comment: 35 pages, 18 figures
- Published
- 2024
48. Rethinking Image Super-Resolution from Training Data Perspectives
- Author
-
Ohtani, Go, Tadokoro, Ryu, Yamada, Ryosuke, Asano, Yuki M., Laina, Iro, Rupprecht, Christian, Inoue, Nakamasa, Yokota, Rio, Kataoka, Hirokatsu, and Aoki, Yoshimitsu
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
In this work, we investigate the understudied effect of the training data used for image super-resolution (SR). Most commonly, novel SR methods are developed and benchmarked on common training datasets such as DIV2K and DF2K. However, we investigate and rethink the training data from the perspectives of diversity and quality, {thereby addressing the question of ``How important is SR training for SR models?''}. To this end, we propose an automated image evaluation pipeline. With this, we stratify existing high-resolution image datasets and larger-scale image datasets such as ImageNet and PASS to compare their performances. We find that datasets with (i) low compression artifacts, (ii) high within-image diversity as judged by the number of different objects, and (iii) a large number of images from ImageNet or PASS all positively affect SR performance. We hope that the proposed simple-yet-effective dataset curation pipeline will inform the construction of SR datasets in the future and yield overall better models., Comment: Accepted to ECCV2024
- Published
- 2024
49. Gas conditions of a star-formation selected sample in the first billion years
- Author
-
Bakx, Tom J. L. C., Algera, Hiddo S. B., Venemans, Bram, Sommovigo, Laura, Fujimoto, Seiji, Carniani, Stefano, Hagimoto, Masato, Hashimoto, Takuya, Inoue, Akio K., Salak, Dragan, Serjeant, Stephen, Vallini, Livia, Eales, Stephen, Ferrara, Andrea, Fudamoto, Yoshinobu, Imamura, Chihiro, Inoue, Shigeki, Knudsen, Kirsten K., Matsuo, Hiroshi, Sugahara, Yuma, Tamura, Yoichi, Taniguchi, Akio, and Yamanaka, Satoshi
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present Atacama Large Millimetre/submillimetre Array (ALMA) observations of the [O$_{\rm III}$] 88 $\mu$m emission of a sample of thirteen galaxies at $z$ = 6 to 7.6 selected as [C$_{\rm II}$]-emitting companion sources of quasars. To disentangle the origins of the luminous Oxygen line in the $z$ > 6 Universe, we looked at emission-line galaxies that are selected through an excellent star-formation tracer [C$_{\rm II}$] with star-formation rates between 9 and 162 M$_{\odot}$/yr. Direct observations reveal [O$_{\rm III}$] emission in just a single galaxy (L$_{\rm [O_{\rm III}]}$/L$_{\rm [C_{\rm II}]}$ = 2.3), and a stacked image shows no [O$_{\rm III}$] detection, providing deep upper limits on the L$_{\rm [O_{\rm III}]}$/L$_{\rm [C_{\rm II}]}$ ratios in the $z > 6$ Universe (L$_{\rm [O_{\rm III}]}$/L$_{\rm [C_{\rm II}]}$ < 1.2 at 3${\sigma}$). While the fidelity of this sample is high, no obvious optical/near-infrared counterpart is seen in the JWST imaging available for four galaxies. Additionally accounting for low-redshift CO emitters, line stacking shows that our sample-wide result remains robust: The enhanced L$_{\rm [O_{\rm III}]}$/L$_{\rm [C_{\rm II}]}$ reported in the first billion years of the Universe is likely due to the selection towards bright, blue Lyman-break galaxies with high surface star-formation rates or young stellar populations. The deep upper limit on the rest-frame 90 $\mu$m continuum emission (< 141 $\mu$Jy at 3${\sigma}$), implies a low average dust temperature (T$_{\rm dust}$ < 30K) and high dust mass (M$_{\rm dust}$ ~ 10$^8$ M$_{\odot}$). As more normal galaxies are explored in the early Universe, synergy between JWST and ALMA is fundamental to further investigate the ISM properties of the a broad range of samples of high-$z$ galaxies., Comment: 20 pages; 13 figures; accepted for publication in MNRAS
- Published
- 2024
50. Examining the Relations between Mothers' Reading Skills, Home Literacy Environment, and Chinese Children's Word Reading across Contexts
- Author
-
Su-Zhen Zhang, Tomohiro Inoue, and George K. Georgiou
- Abstract
We examined the relations between mothers' reading skills, home literacy environment (HLE), and children's emergent literacy skills and word reading and whether their relations vary across urban and rural contexts in China. Four hundred third-year kindergarten Chinese children (M[subscript age] = 74.50 ± 3.77 months) were recruited from Jining (N = 232) and the small towns of Luqiao and Mapo (N = 168). The children were assessed on emergent literacy skills (pinyin letter knowledge, phonological awareness, rapid automatized naming [RAN], and vocabulary) and word reading. Their mothers were also assessed on reading skills and completed a questionnaire on HLE (direct teaching, shared book reading, and access to literacy resources [ALR]). Results of structural equation modeling showed that (a) mothers' reading skills correlated with shared book reading and ALR in both groups, (b) direct teaching predicted children's pinyin letter knowledge, and ALR predicted phonological awareness and vocabulary in both groups after controlling for mothers' reading skills and parents' education, and (c) mothers' reading skills had an indirect effect on children's word reading through vocabulary (in the urban group) or phonological awareness (in the rural group). Multigroup analyses further showed that the effect of direct teaching on RAN was stronger in the rural group. These findings suggest that HLE exerts its effect on children's emergent literacy skills and word reading across contexts, even after controlling for mothers' reading skills.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.