4,800 results on '"A. Denniston"'
Search Results
2. Sample size for developing a prediction model with a binary outcome: targeting precise individual risk estimates to improve clinical decisions and fairness
- Author
-
Riley, Richard D, Collins, Gary S, Whittle, Rebecca, Archer, Lucinda, Snell, Kym IE, Dhiman, Paula, Kirton, Laura, Legha, Amardeep, Liu, Xiaoxuan, Denniston, Alastair, Harrell Jr, Frank E, Wynants, Laure, Martin, Glen P, and Ensor, Joie
- Subjects
Statistics - Methodology - Abstract
When developing a clinical prediction model, the sample size of the development dataset is a key consideration. Small sample sizes lead to greater concerns of overfitting, instability, poor performance and lack of fairness. Previous research has outlined minimum sample size calculations to minimise overfitting and precisely estimate the overall risk. However even when meeting these criteria, the uncertainty (instability) in individual-level risk estimates may be considerable. In this article we propose how to examine and calculate the sample size required for developing a model with acceptably precise individual-level risk estimates to inform decisions and improve fairness. We outline a five-step process to be used before data collection or when an existing dataset is available. It requires researchers to specify the overall risk in the target population, the (anticipated) distribution of key predictors in the model, and an assumed 'core model' either specified directly (i.e., a logistic regression equation is provided) or based on specified C-statistic and relative effects of (standardised) predictors. We produce closed-form solutions that decompose the variance of an individual's risk estimate into Fisher's unit information matrix, predictor values and total sample size; this allows researchers to quickly calculate and examine individual-level uncertainty interval widths and classification instability for specified sample sizes. Such information can be presented to key stakeholders (e.g., health professionals, patients, funders) using prediction and classification instability plots to help identify the (target) sample size required to improve trust, reliability and fairness in individual predictions. Our proposal is implemented in software module pmstabilityss. We provide real examples and emphasise the importance of clinical context including any risk thresholds for decision making., Comment: 36 pages, 6 figures, 1 table
- Published
- 2024
3. Extended sample size calculations for evaluation of prediction models using a threshold for classification
- Author
-
Whittle, Rebecca, Ensor, Joie, Archer, Lucinda, Collins, Gary S., Dhiman, Paula, Denniston, Alastair, Alderman, Joseph, Legha, Amardeep, van Smeden, Maarten, Moons, Karel G., Cazier, Jean-Baptiste, Riley, Richard D., and Snell, Kym I. E.
- Subjects
Statistics - Methodology - Abstract
When evaluating the performance of a model for individualised risk prediction, the sample size needs to be large enough to precisely estimate the performance measures of interest. Current sample size guidance is based on precisely estimating calibration, discrimination, and net benefit, which should be the first stage of calculating the minimum required sample size. However, when a clinically important threshold is used for classification, other performance measures can also be used. We extend the previously published guidance to precisely estimate threshold-based performance measures. We have developed closed-form solutions to estimate the sample size required to target sufficiently precise estimates of accuracy, specificity, sensitivity, PPV, NPV, and F1-score in an external evaluation study of a prediction model with a binary outcome. This approach requires the user to pre-specify the target standard error and the expected value for each performance measure. We describe how the sample size formulae were derived and demonstrate their use in an example. Extension to time-to-event outcomes is also considered. In our examples, the minimum sample size required was lower than that required to precisely estimate the calibration slope, and we expect this would most often be the case. Our formulae, along with corresponding Python code and updated R and Stata commands (pmvalsampsize), enable researchers to calculate the minimum sample size needed to precisely estimate threshold-based performance measures in an external evaluation study. These criteria should be used alongside previously published criteria to precisely estimate the calibration, discrimination, and net-benefit., Comment: 27 pages, 1 figure
- Published
- 2024
4. Jamming Crossovers in a Confined Driven Polymer in Solution
- Author
-
Changizrezaei, Setarehalsadat, Karttunen, Mikko, and Denniston, Colin
- Subjects
Condensed Matter - Soft Condensed Matter - Abstract
We use lattice-Boltzmann molecular dynamics (LBMD) simulations to study the compression of a confined polymer immersed in a fluid and pushed by a large spherical colloid with a diameter comparable to the channel width. We examined the chain's deformation with both purely repulsive and weakly attractive Lennard-Jones (LJ) potentials applied between the monomers. The sphere's velocity was varied over 3 orders of magnitude. The chain is in a non-dense state at low pushing velocities for both repulsive and attractive monomer interactions. When the velocity of the spherical colloid exceeds a threshold $v^*$, the back end of the chain transitions to a high density state with low mean square monomer displacement (MSD) values. The front end, however, remains in a non-dense state with high MSD indicating a pseudo two-state coexistence. This crossover is also revealed through volume per monomer and MSD as a function of the sphere's velocity. We also studied polymer dynamics by investigating folding events at different times., Comment: 17 pages, 11 figures
- Published
- 2024
5. 12C(e,e'pN) measurements of short range correlations in the tensor-to-scalar interaction transition region
- Author
-
I. Korover, J.R. Pybus, A. Schmidt, F. Hauenstein, M. Duer, O. Hen, E. Piasetzky, L.B. Weinstein, D.W. Higinbotham, S. Adhikari, K. Adhikari, M.J. Amaryan, Giovanni Angelini, H. Atac, L. Barion, M. Battaglieri, A. Beck, I. Bedlinskiy, Fatiha Benmokhtar, A. Bianconi, A.S. Biselli, S. Boiarinov, W.J. Briscoe, W.K. Brooks, D. Bulumulla, V.D. Burkert, D.S. Carman, A. Celentano, P. Chatagnon, T. Chetry, L. Clark, B. Clary, P.L. Cole, M. Contalbrigo, V. Crede, R. Cruz-Torres, A. D'Angelo, R. De Vita, M. Defurne, A. Denniston, A. Deur, S. Diehl, C. Djalali, R. Dupre, H. Egiyan, M. Ehrhart, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, R. Fersch, A. Filippi, T. Forest, G. Gavalian, F.X. Girod, E. Golovatch, R.W. Gothe, K.A. Griffioen, M. Guidal, K. Hafidi, H. Hakobyan, N. Harrison, M. Hattawy, T.B. Hayward, D. Heddle, K. Hicks, M. Holtrop, Y. Ilieva, D.G. Ireland, E.L. Isupov, D. Jenkins, H.S. Jo, K. Joo, S. Joosten, D. Keller, M. Khachatryan, A. Khanal, M. Khandaker, A. Kim, C.W. Kim, F.J. Klein, V. Kubarovsky, L. Lanza, M. Leali, P. Lenisa, K. Livingston, V. Lucherini, I.J.D. MacGregor, D. Marchand, N. Markov, L. Marsicano, V. Mascagna, B. McKinnon, S. Mey-Tal Beck, T. Mineeva, M. Mirazita, A. Movsisyan, C. Munoz Camacho, B. Mustapha, P. Nadel-Turonski, K. Neupane, G. Niculescu, M. Osipenko, A.I. Ostrovidov, M. Paolone, L.L. Pappalardo, R. Paremuzyan, E. Pasyuk, W. Phelps, O. Pogorelko, J.W. Price, Y. Prok, D. Protopopescu, B.A. Raue, M. Ripani, J. Ritman, A. Rizzo, G. Rosner, J. Rowley, F. Sabatié, C. Salgado, R.A. Schumacher, E.P. Segarra, Y.G. Sharabian, U. Shrestha, D. Sokhan, O. Soto, N. Sparveris, S. Stepanyan, I.I. Strakovsky, S. Strauch, J.A. Tan, N. Tyler, M. Ungaro, L. Venturelli, H. Voskanyan, E. Voutier, T. Wang, D. Watts, X. Wei, M.H. Wood, N. Zachariou, J. Zhang, Z.W. Zhao, and X. Zheng
- Subjects
Physics ,QC1-999 - Abstract
High-momentum configurations of nucleon pairs at short-distance are probed using measurements of the 12C(e,e′p) and 12C(e,e′pN) reactions (where N is either n or p), at high-Q2 and xB>1.1. The data span a missing-momentum range of 300–1000 MeV/c and are predominantly sensitive to the transition region of the strong nuclear interaction from a Tensor to Scalar interaction. The data are well reproduced by theoretical calculations using the Generalized Contact Formalism with both chiral and phenomenological nucleon-nucleon (NN) interaction models. This agreement suggests that the measured high missing-momentum protons up to 1000 MeV/c predominantly belong to short-ranged correlated (SRC) pairs. The measured 12C(e,e′pN) / 12C(e,e′p) and 12C(e,e′pp) / 12C(e,e′pn) cross-section ratios are consistent with a decrease in the fraction of proton-neutron SRC pairs and increase in the fraction of proton-proton SRC pairs with increasing missing momentum. This confirms the transition from an isospin-dependent tensor NN interaction at ∼400 MeV/c to an isospin-independent scalar interaction at high-momentum around ∼800 MeV/c as predicted by theoretical calculation.
- Published
- 2021
- Full Text
- View/download PDF
6. Euclid. I. Overview of the Euclid mission
- Author
-
Euclid Collaboration, Mellier, Y., Abdurro'uf, Barroso, J. A. Acevedo, Achúcarro, A., Adamek, J., Adam, R., Addison, G. E., Aghanim, N., Aguena, M., Ajani, V., Akrami, Y., Al-Bahlawan, A., Alavi, A., Albuquerque, I. S., Alestas, G., Alguero, G., Allaoui, A., Allen, S. W., Allevato, V., Alonso-Tetilla, A. V., Altieri, B., Alvarez-Candal, A., Alvi, S., Amara, A., Amendola, L., Amiaux, J., Andika, I. T., Andreon, S., Andrews, A., Angora, G., Angulo, R. E., Annibali, F., Anselmi, A., Anselmi, S., Arcari, S., Archidiacono, M., Aricò, G., Arnaud, M., Arnouts, S., Asgari, M., Asorey, J., Atayde, L., Atek, H., Atrio-Barandela, F., Aubert, M., Aubourg, E., Auphan, T., Auricchio, N., Aussel, B., Aussel, H., Avelino, P. P., Avgoustidis, A., Avila, S., Awan, S., Azzollini, R., Baccigalupi, C., Bachelet, E., Bacon, D., Baes, M., Bagley, M. B., Bahr-Kalus, B., Balaguera-Antolinez, A., Balbinot, E., Balcells, M., Baldi, M., Baldry, I., Balestra, A., Ballardini, M., Ballester, O., Balogh, M., Bañados, E., Barbier, R., Bardelli, S., Baron, M., Barreiro, T., Barrena, R., Barriere, J. -C., Barros, B. J., Barthelemy, A., Bartolo, N., Basset, A., Battaglia, P., Battisti, A. J., Baugh, C. M., Baumont, L., Bazzanini, L., Beaulieu, J. -P., Beckmann, V., Belikov, A. N., Bel, J., Bellagamba, F., Bella, M., Bellini, E., Benabed, K., Bender, R., Benevento, G., Bennett, C. L., Benson, K., Bergamini, P., Bermejo-Climent, J. R., Bernardeau, F., Bertacca, D., Berthe, M., Berthier, J., Bethermin, M., Beutler, F., Bevillon, C., Bhargava, S., Bhatawdekar, R., Bianchi, D., Bisigello, L., Biviano, A., Blake, R. P., Blanchard, A., Blazek, J., Blot, L., Bosco, A., Bodendorf, C., Boenke, T., Böhringer, H., Boldrini, P., Bolzonella, M., Bonchi, A., Bonici, M., Bonino, D., Bonino, L., Bonvin, C., Bon, W., Booth, J. T., Borgani, S., Borlaff, A. S., Borsato, E., Bose, B., Botticella, M. T., Boucaud, A., Bouche, F., Boucher, J. S., Boutigny, D., Bouvard, T., Bouwens, R., Bouy, H., Bowler, R. A. A., Bozza, V., Bozzo, E., Branchini, E., Brando, G., Brau-Nogue, S., Brekke, P., Bremer, M. N., Brescia, M., Breton, M. -A., Brinchmann, J., Brinckmann, T., Brockley-Blatt, C., Brodwin, M., Brouard, L., Brown, M. L., Bruton, S., Bucko, J., Buddelmeijer, H., Buenadicha, G., Buitrago, F., Burger, P., Burigana, C., Busillo, V., Busonero, D., Cabanac, R., Cabayol-Garcia, L., Cagliari, M. S., Caillat, A., Caillat, L., Calabrese, M., Calabro, A., Calderone, G., Calura, F., Quevedo, B. Camacho, Camera, S., Campos, L., Canas-Herrera, G., Candini, G. P., Cantiello, M., Capobianco, V., Cappellaro, E., Cappelluti, N., Cappi, A., Caputi, K. I., Cara, C., Carbone, C., Cardone, V. F., Carella, E., Carlberg, R. G., Carle, M., Carminati, L., Caro, F., Carrasco, J. M., Carretero, J., Carrilho, P., Duque, J. Carron, Carry, B., Carvalho, A., Carvalho, C. S., Casas, R., Casas, S., Casenove, P., Casey, C. M., Cassata, P., Castander, F. J., Castelao, D., Castellano, M., Castiblanco, L., Castignani, G., Castro, T., Cavet, C., Cavuoti, S., Chabaud, P. -Y., Chambers, K. C., Charles, Y., Charlot, S., Chartab, N., Chary, R., Chaumeil, F., Cho, H., Chon, G., Ciancetta, E., Ciliegi, P., Cimatti, A., Cimino, M., Cioni, M. -R. L., Claydon, R., Cleland, C., Clément, B., Clements, D. L., Clerc, N., Clesse, S., Codis, S., Cogato, F., Colbert, J., Cole, R. E., Coles, P., Collett, T. E., Collins, R. S., Colodro-Conde, C., Colombo, C., Combes, F., Conforti, V., Congedo, G., Conseil, S., Conselice, C. J., Contarini, S., Contini, T., Conversi, L., Cooray, A. R., Copin, Y., Corasaniti, P. -S., Corcho-Caballero, P., Corcione, L., Cordes, O., Corpace, O., Correnti, M., Costanzi, M., Costille, A., Courbin, F., Mifsud, L. Courcoult, Courtois, H. M., Cousinou, M. -C., Covone, G., Cowell, T., Cragg, C., Cresci, G., Cristiani, S., Crocce, M., Cropper, M., Crouzet, P. E, Csizi, B., Cuby, J. -G., Cucchetti, E., Cucciati, O., Cuillandre, J. -C., Cunha, P. A. C., Cuozzo, V., Daddi, E., D'Addona, M., Dafonte, C., Dagoneau, N., Dalessandro, E., Dalton, G. B., D'Amico, G., Dannerbauer, H., Danto, P., Das, I., Da Silva, A., da Silva, R., Doumerg, W. d'Assignies, Daste, G., Davies, J. E., Davini, S., Dayal, P., de Boer, T., Decarli, R., De Caro, B., Degaudenzi, H., Degni, G., de Jong, J. T. A., de la Bella, L. F., de la Torre, S., Delhaise, F., Delley, D., Delucchi, G., De Lucia, G., Denniston, J., De Paolis, F., De Petris, M., Derosa, A., Desai, S., Desjacques, V., Despali, G., Desprez, G., De Vicente-Albendea, J., Deville, Y., Dias, J. D. F., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Diego, J. M., Di Ferdinando, D., Di Giorgio, A. M., Dimauro, P., Dinis, J., Dolag, K., Dolding, C., Dole, H., Sánchez, H. Domínguez, Doré, O., Dournac, F., Douspis, M., Dreihahn, H., Droge, B., Dryer, B., Dubath, F., Duc, P. -A., Ducret, F., Duffy, C., Dufresne, F., Duncan, C. A. J., Dupac, X., Duret, V., Durrer, R., Durret, F., Dusini, S., Ealet, A., Eggemeier, A., Eisenhardt, P. R. M., Elbaz, D., Elkhashab, M. Y., Ellien, A., Endicott, J., Enia, A., Erben, T., Vigo, J. A. Escartin, Escoffier, S., Sanz, I. Escudero, Essert, J., Ettori, S., Ezziati, M., Fabbian, G., Fabricius, M., Fang, Y., Farina, A., Farina, M., Farinelli, R., Farrens, S., Faustini, F., Feltre, A., Ferguson, A. M. N., Ferrando, P., Ferrari, A. G., Ferré-Mateu, A., Ferreira, P. G., Ferreras, I., Ferrero, I., Ferriol, S., Ferruit, P., Filleul, D., Finelli, F., Finkelstein, S. L., Finoguenov, A., Fiorini, B., Flentge, F., Focardi, P., Fonseca, J., Fontana, A., Fontanot, F., Fornari, F., Fosalba, P., Fossati, M., Fotopoulou, S., Fouchez, D., Fourmanoit, N., Frailis, M., Fraix-Burnet, D., Franceschi, E., Franco, A., Franzetti, P., Freihoefer, J., Frenk, C. . S., Frittoli, G., Frugier, P. -A., Frusciante, N., Fumagalli, A., Fumagalli, M., Fumana, M., Fu, Y., Gabarra, L., Galeotta, S., Galluccio, L., Ganga, K., Gao, H., García-Bellido, J., Garcia, K., Gardner, J. P., Garilli, B., Gaspar-Venancio, L. -M., Gasparetto, T., Gautard, V., Gavazzi, R., Gaztanaga, E., Genolet, L., Santos, R. Genova, Gentile, F., George, K., Gerbino, M., Ghaffari, Z., Giacomini, F., Gianotti, F., Gibb, G. P. S., Gillard, W., Gillis, B., Ginolfi, M., Giocoli, C., Girardi, M., Giri, S. K., Goh, L. W. K., Gómez-Alvarez, P., Gonzalez-Perez, V., Gonzalez, A. H., Gonzalez, E. J., Gonzalez, J. C., Beauchamps, S. Gouyou, Gozaliasl, G., Gracia-Carpio, J., Grandis, S., Granett, B. R., Granvik, M., Grazian, A., Gregorio, A., Grenet, C., Grillo, C., Grupp, F., Gruppioni, C., Gruppuso, A., Guerbuez, C., Guerrini, S., Guidi, M., Guillard, P., Gutierrez, C. M., Guttridge, P., Guzzo, L., Gwyn, S., Haapala, J., Haase, J., Haddow, C. R., Hailey, M., Hall, A., Hall, D., Hamaus, N., Haridasu, B. S., Harnois-Déraps, J., Harper, C., Hartley, W. G., Hasinger, G., Hassani, F., Hatch, N. A., Haugan, S. V. H., Häußler, B., Heavens, A., Heisenberg, L., Helmi, A., Helou, G., Hemmati, S., Henares, K., Herent, O., Hernández-Monteagudo, C., Heuberger, T., Hewett, P. C., Heydenreich, S., Hildebrandt, H., Hirschmann, M., Hjorth, J., Hoar, J., Hoekstra, H., Holland, A. D., Holliman, M. S., Holmes, W., Hook, I., Horeau, B., Hormuth, F., Hornstrup, A., Hosseini, S., Hu, D., Hudelot, P., Hudson, M. J., Huertas-Company, M., Huff, E. M., Hughes, A. C. N., Humphrey, A., Hunt, L. K., Huynh, D. D., Ibata, R., Ichikawa, K., Iglesias-Groth, S., Ilbert, O., Ilić, S., Ingoglia, L., Iodice, E., Israel, H., Israelsson, U. E., Izzo, L., Jablonka, P., Jackson, N., Jacobson, J., Jafariyazani, M., Jahnke, K., Jain, B., Jansen, H., Jarvis, M. J., Jasche, J., Jauzac, M., Jeffrey, N., Jhabvala, M., Jimenez-Teja, Y., Muñoz, A. Jimenez, Joachimi, B., Johansson, P. H., Joudaki, S., Jullo, E., Kajava, J. J. E., Kang, Y., Kannawadi, A., Kansal, V., Karagiannis, D., Kärcher, M., Kashlinsky, A., Kazandjian, M. V., Keck, F., Keihänen, E., Kerins, E., Kermiche, S., Khalil, A., Kiessling, A., Kiiveri, K., Kilbinger, M., Kim, J., King, R., Kirkpatrick, C. C., Kitching, T., Kluge, M., Knabenhans, M., Knapen, J. H., Knebe, A., Kneib, J. -P., Kohley, R., Koopmans, L. V. E., Koskinen, H., Koulouridis, E., Kou, R., Kovács, A., Kovačić, I., Kowalczyk, A., Koyama, K., Kraljic, K., Krause, O., Kruk, S., Kubik, B., Kuchner, U., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Lacasa, F., Lacey, C. G., La Franca, F., Lagarde, N., Lahav, O., Laigle, C., La Marca, A., La Marle, O., Lamine, B., Lam, M. C., Lançon, A., Landt, H., Langer, M., Lapi, A., Larcheveque, C., Larsen, S. S., Lattanzi, M., Laudisio, F., Laugier, D., Laureijs, R., Laurent, V., Lavaux, G., Lawrenson, A., Lazanu, A., Lazeyras, T., Boulc'h, Q. Le, Brun, A. M. C. Le, Brun, V. Le, Leclercq, F., Lee, S., Graet, J. Le, Legrand, L., Leirvik, K. N., Jeune, M. Le, Lembo, M., Mignant, D. Le, Lepinzan, M. D., Lepori, F., Reun, A. Le, Leroy, G., Lesci, G. F., Lesgourgues, J., Leuzzi, L., Levi, M. E., Liaudat, T. I., Libet, G., Liebing, P., Ligori, S., Lilje, P. B., Lin, C. -C., Linde, D., Linder, E., Lindholm, V., Linke, L., Li, S. -S., Liu, S. J., Lloro, I., Lobo, F. S. N., Lodieu, N., Lombardi, M., Lombriser, L., Lonare, P., Longo, G., López-Caniego, M., Lopez, X. Lopez, Alvarez, J. Lorenzo, Loureiro, A., Loveday, J., Lusso, E., Macias-Perez, J., Maciaszek, T., Maggio, G., Magliocchetti, M., Magnard, F., Magnier, E. A., Magro, A., Mahler, G., Mainetti, G., Maino, D., Maiorano, E., Malavasi, N., Mamon, G. A., Mancini, C., Mandelbaum, R., Manera, M., Manjón-García, A., Mannucci, F., Mansutti, O., Outeiro, M. Manteiga, Maoli, R., Maraston, C., Marcin, S., Marcos-Arenal, P., Margalef-Bentabol, B., Marggraf, O., Marinucci, D., Marinucci, M., Markovic, K., Marleau, F. R., Marpaud, J., Martignac, J., Martín-Fleitas, J., Martin-Moruno, P., Martin, E. L., Martinelli, M., Martinet, N., Martin, H., Martins, C. J. A. P., Marulli, F., Massari, D., Massey, R., Masters, D. C., Matarrese, S., Matsuoka, Y., Matthew, S., Maughan, B. J., Mauri, N., Maurin, L., Maurogordato, S., McCarthy, K., McConnachie, A. W., McCracken, H. J., McDonald, I., McEwen, J. D., McPartland, C. J. R., Medinaceli, E., Mehta, V., Mei, S., Melchior, M., Melin, J. -B., Ménard, B., Mendes, J., Mendez-Abreu, J., Meneghetti, M., Mercurio, A., Merlin, E., Metcalf, R. B., Meylan, G., Migliaccio, M., Mignoli, M., Miller, L., Miluzio, M., Milvang-Jensen, B., Mimoso, J. P., Miquel, R., Miyatake, H., Mobasher, B., Mohr, J. J., Monaco, P., Monguió, M., Montoro, A., Mora, A., Dizgah, A. Moradinezhad, Moresco, M., Moretti, C., Morgante, G., Morisset, N., Moriya, T. J., Morris, P. W., Mortlock, D. J., Moscardini, L., Mota, D. F., Mottet, S., Moustakas, L. A., Moutard, T., Müller, T., Munari, E., Murphree, G., Murray, C., Murray, N., Musi, P., Nadathur, S., Nagam, B. C., Nagao, T., Naidoo, K., Nakajima, R., Nally, C., Natoli, P., Navarro-Alsina, A., Girones, D. Navarro, Neissner, C., Nersesian, A., Nesseris, S., Nguyen-Kim, H. N., Nicastro, L., Nichol, R. C., Nielbock, M., Niemi, S. -M., Nieto, S., Nilsson, K., Noller, J., Norberg, P., Nouri-Zonoz, A., Ntelis, P., Nucita, A. A., Nugent, P., Nunes, N. J., Nutma, T., Ocampo, I., Odier, J., Oesch, P. A., Oguri, M., Oliveira, D. Magalhaes, Onoue, M., Oosterbroek, T., Oppizzi, F., Ordenovic, C., Osato, K., Pacaud, F., Pace, F., Padilla, C., Paech, K., Pagano, L., Page, M. J., Palazzi, E., Paltani, S., Pamuk, S., Pandolfi, S., Paoletti, D., Paolillo, M., Papaderos, P., Pardede, K., Parimbelli, G., Parmar, A., Partmann, C., Pasian, F., Passalacqua, F., Paterson, K., Patrizii, L., Pattison, C., Paulino-Afonso, A., Paviot, R., Peacock, J. A., Pearce, F. R., Pedersen, K., Peel, A., Peletier, R. F., Ibanez, M. Pellejero, Pello, R., Penny, M. T., Percival, W. J., Perez-Garrido, A., Perotto, L., Pettorino, V., Pezzotta, A., Pezzuto, S., Philippon, A., Pierre, M., Piersanti, O., Pietroni, M., Piga, L., Pilo, L., Pires, S., Pisani, A., Pizzella, A., Pizzuti, L., Plana, C., Polenta, G., Pollack, J. E., Poncet, M., Pöntinen, M., Pool, P., Popa, L. A., Popa, V., Popp, J., Porciani, C., Porth, L., Potter, D., Poulain, M., Pourtsidou, A., Pozzetti, L., Prandoni, I., Pratt, G. W., Prezelus, S., Prieto, E., Pugno, A., Quai, S., Quilley, L., Racca, G. D., Raccanelli, A., Rácz, G., Radinović, S., Radovich, M., Ragagnin, A., Ragnit, U., Raison, F., Ramos-Chernenko, N., Ranc, C., Rasera, Y., Raylet, N., Rebolo, R., Refregier, A., Reimberg, P., Reiprich, T. H., Renk, F., Renzi, A., Retre, J., Revaz, Y., Reylé, C., Reynolds, L., Rhodes, J., Ricci, F., Ricci, M., Riccio, G., Ricken, S. O., Rissanen, S., Risso, I., Rix, H. -W., Robin, A. C., Rocca-Volmerange, B., Rocci, P. -F., Rodenhuis, M., Rodighiero, G., Monroy, M. Rodriguez, Rollins, R. P., Romanello, M., Roman, J., Romelli, E., Romero-Gomez, M., Roncarelli, M., Rosati, P., Rosset, C., Rossetti, E., Roster, W., Rottgering, H. J. A., Rozas-Fernández, A., Ruane, K., Rubino-Martin, J. A., Rudolph, A., Ruppin, F., Rusholme, B., Sacquegna, S., Sáez-Casares, I., Saga, S., Saglia, R., Sahlén, M., Saifollahi, T., Sakr, Z., Salvalaggio, J., Salvaterra, R., Salvati, L., Salvato, M., Salvignol, J. -C., Sánchez, A. G., Sanchez, E., Sanders, D. B., Sapone, D., Saponara, M., Sarpa, E., Sarron, F., Sartori, S., Sartoris, B., Sassolas, B., Sauniere, L., Sauvage, M., Sawicki, M., Scaramella, R., Scarlata, C., Scharré, L., Schaye, J., Schewtschenko, J. A., Schindler, J. -T., Schinnerer, E., Schirmer, M., Schmidt, F., Schmidt, M., Schneider, A., Schneider, M., Schneider, P., Schöneberg, N., Schrabback, T., Schultheis, M., Schulz, S., Schuster, N., Schwartz, J., Sciotti, D., Scodeggio, M., Scognamiglio, D., Scott, D., Scottez, V., Secroun, A., Sefusatti, E., Seidel, G., Seiffert, M., Sellentin, E., Selwood, M., Semboloni, E., Sereno, M., Serjeant, S., Serrano, S., Setnikar, G., Shankar, F., Sharples, R. M., Short, A., Shulevski, A., Shuntov, M., Sias, M., Sikkema, G., Silvestri, A., Simon, P., Sirignano, C., Sirri, G., Skottfelt, J., Slezak, E., Sluse, D., Smith, G. P., Smith, L. C., Smith, R. E., Smit, S. J. A., Soldano, F., Solheim, B. G. B., Sorce, J. G., Sorrenti, F., Soubrie, E., Spinoglio, L., Mancini, A. Spurio, Stadel, J., Stagnaro, L., Stanco, L., Stanford, S. A., Starck, J. -L., Stassi, P., Steinwagner, J., Stern, D., Stone, C., Strada, P., Strafella, F., Stramaccioni, D., Surace, C., Sureau, F., Suyu, S. H., Swindells, I., Szafraniec, M., Szapudi, I., Taamoli, S., Talia, M., Tallada-Crespí, P., Tanidis, K., Tao, C., Tarrío, P., Tavagnacco, D., Taylor, A. N., Taylor, J. E., Taylor, P. L., Teixeira, E. M., Tenti, M., Idiago, P. Teodoro, Teplitz, H. I., Tereno, I., Tessore, N., Testa, V., Testera, G., Tewes, M., Teyssier, R., Theret, N., Thizy, C., Thomas, P. D., Toba, Y., Toft, S., Toledo-Moreo, R., Tolstoy, E., Tommasi, E., Torbaniuk, O., Torradeflot, F., Tortora, C., Tosi, S., Tosti, S., Trifoglio, M., Troja, A., Trombetti, T., Tronconi, A., Tsedrik, M., Tsyganov, A., Tucci, M., Tutusaus, I., Uhlemann, C., Ulivi, L., Urbano, M., Vacher, L., Vaillon, L., Valageas, P., Valdes, I., Valentijn, E. A., Valenziano, L., Valieri, C., Valiviita, J., Broeck, M. Van den, Vassallo, T., Vavrek, R., Vega-Ferrero, J., Venemans, B., Venhola, A., Ventura, S., Kleijn, G. Verdoes, Vergani, D., Verma, A., Vernizzi, F., Veropalumbo, A., Verza, G., Vescovi, C., Vibert, D., Viel, M., Vielzeuf, P., Viglione, C., Viitanen, A., Villaescusa-Navarro, F., Vinciguerra, S., Visticot, F., Voggel, K., von Wietersheim-Kramsta, M., Vriend, W. J., Wachter, S., Walmsley, M., Walth, G., Walton, D. M., Walton, N. A., Wander, M., Wang, L., Wang, Y., Weaver, J. R., Weller, J., Wetzstein, M., Whalen, D. J., Whittam, I. H., Widmer, A., Wiesmann, M., Wilde, J., Williams, O. R., Winther, H. -A., Wittje, A., Wong, J. H. W., Wright, A. H., Yankelevich, V., Yeung, H. W., Yoon, M., Youles, S., Yung, L. Y. A., Zacchei, A., Zalesky, L., Zamorani, G., Vitorelli, A. Zamorano, Marc, M. Zanoni, Zennaro, M., Zerbi, F. M., Zinchenko, I. A., Zoubian, J., Zucca, E., and Zumalacarregui, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The current standard model of cosmology successfully describes a variety of measurements, but the nature of its main ingredients, dark matter and dark energy, remains unknown. Euclid is a medium-class mission in the Cosmic Vision 2015-2025 programme of the European Space Agency (ESA) that will provide high-resolution optical imaging, as well as near-infrared imaging and spectroscopy, over about 14,000 deg^2 of extragalactic sky. In addition to accurate weak lensing and clustering measurements that probe structure formation over half of the age of the Universe, its primary probes for cosmology, these exquisite data will enable a wide range of science. This paper provides a high-level overview of the mission, summarising the survey characteristics, the various data-processing steps, and data products. We also highlight the main science objectives and expected performance., Comment: Accepted for publication in the A&A special issue`Euclid on Sky'
- Published
- 2024
7. Euclid. II. The VIS Instrument
- Author
-
Euclid Collaboration, Cropper, M., Al-Bahlawan, A., Amiaux, J., Awan, S., Azzollini, R., Benson, K., Berthe, M., Boucher, J., Bozzo, E., Brockley-Blatt, C., Candini, G. P., Cara, C., Chaudery, R. A., Cole, R. E., Danto, P., Denniston, J., Di Giorgio, A. M., Dryer, B., Endicott, J., Dubois, J. -P., Farina, M., Galli, E., Genolet, L., Gow, J. P. D., Guttridge, P., Hailey, M., Hall, D., Harper, C., Holland, A. D., Horeau, B., Hu, D., King, R., James, R. E., Larcheveque, C., Khalil, A., Lawrenson, A., Liebing, P., Martignac, J., McCracken, H. J., Murray, N., Nakajima, R., Niemi, S. -M., Pendem, A., Paltani, S., Philippon, A., Pool, P., Plana, C., Pottinger, S., Racca, G. D., Rousseau, A., Ruane, K., Salatti, M., Salvignol, J. -C., Sciortino, A., Short, Alexander, Liu, S. J., Skottfelt, J., Swindells, I., Smit, S. J. A., Szafraniec, M., Thomas, P. D., Thomas, W., Tommasi, E., Winter, B., Tosti, S., Visticot, F., Walton, D. M., Willis, G., Mora, A., Kohley, R., Massey, R., Nightingale, J. W., Kitching, T., Hoekstra, H., Aghanim, N., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Aussel, H., Baldi, M., Balestra, A., Bardelli, S., Basset, A., Bender, R., Bodendorf, C., Boenke, T., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, R., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cuby, J. -G., Cuillandre, J. -C., Da Silva, A., Degaudenzi, H., Dinis, J., Dolding, C., Douspis, M., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Fabricius, M., Farrens, S., Ferriol, S., Fosalba, P., Fotopoulou, S., Frailis, M., Franceschi, E., Franzetti, P., Frugier, P. -A., Fumana, M., Galeotta, S., Garilli, B., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Granett, B. R., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Herent, O., Hoar, J., Holliman, M. S., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kilbinger, M., Kubik, B., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Lahav, O., Laureijs, R., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Alvarez, J. Lorenzo, Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Martinet, N., Marulli, F., Masters, D. C., Maurogordato, S., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Miller, L., Mohr, J. J., Moresco, M., Moscardini, L., Nichol, R. C., Nutma, T., Padilla, C., Paech, K., Pasian, F., Peacock, J. A., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Refregier, A., Renzi, A., Riccio, G., Rix, Hans-Walter, Romelli, E., Roncarelli, M., Rosset, C., Rossetti, E., Rottgering, H. J. A., Saglia, R., Sapone, D., Sauvage, M., Scaramella, R., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wachter, S., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Zucca, E., Baccigalupi, C., Bernardeau, F., Biviano, A., Bolzonella, M., Boucaud, A., Burigana, C., Calabrese, M., Casenove, P., Colodro-Conde, C., Crocce, M., De Lucia, G., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Farinelli, R., Finelli, F., George, K., Gracia-Carpio, J., Ilić, S., Israel, H., Mainetti, G., Marcin, S., Martinelli, M., Mauri, N., Neissner, C., Nguyen-Kim, H. N., Pezzotta, A., Pöntinen, M., Porciani, C., Sakr, Z., Scottez, V., Sefusatti, E., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Aubourg, E., Ballardini, M., Bertacca, D., Bethermin, M., Blanchard, A., Blot, L., Borgani, S., Borlaff, A. S., Bruton, S., Cabanac, R., Calabro, A., Calderone, G., Canas-Herrera, G., Cappi, A., Carvalho, C. S., Castignani, G., Castro, T., Chambers, K. C., Chary, R., Contarini, S., Cooray, A. R., Cordes, O., Costanzi, M., Cucciati, O., Davini, S., De Caro, B., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gregorio, A., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Huertas-Company, M., Ilbert, O., Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Lacasa, F., Graet, J. Le, Legrand, L., Libet, G., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., McPartland, C. J. R., Metcalf, R. B., Migliaccio, M., Miluzio, M., Monaco, P., Moretti, C., Morgante, G., Nadathur, S., Walton, Nicholas A., Odier, J., Oguri, M., Patrizii, L., Popa, V., Potter, D., Pourtsidou, A., Reimberg, P., Risso, I., Rocci, P. -F., Rollins, R. P., Rusholme, B., Sahlén, M., Sánchez, A. G., Scarlata, C., Schaye, J., Schewtschenko, J. A., Schneider, A., Schultheis, M., Sereno, M., Shankar, F., Sikkema, G., Silvestri, A., Simon, P., Mancini, A. Spurio, Stadel, J., Stanford, S. A., Steinwagner, J., Tanidis, K., Tao, C., Tessore, N., Testera, G., Tewes, M., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Vernizzi, F., Verza, G., Vielzeuf, P., Weaver, J. R., Zalesky, L., Zinchenko, I. A., Archidiacono, M., Atrio-Barandela, F., Bouvard, T., Caro, F., Dimauro, P., Duc, P. -A., Fang, Y., Ferguson, A. M. N., Gasparetto, T., Gutierrez, C. M., Kova{č}ić, I., Kruk, S., Brun, A. M. C. Le, Liaudat, T. I., Montoro, A., Murray, C., Pagano, L., Paoletti, D., Sarpa, E., Viitanen, A., Lesgourgues, J., and Martín-Fleitas, J.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information., Comment: Paper submitted as part of the A&A special issue `Euclid on Sky', which contains Euclid key reference papers and first results from the Euclid Early Release Observations
- Published
- 2024
8. Active Signal Emitter Placement In Complex Environments
- Author
-
Denniston, Christopher E., Şenbaşlar, Baskın, and Sukhatme, Gaurav S.
- Subjects
Computer Science - Robotics - Abstract
Placement of electromagnetic signal emitting devices, such as light sources, has important usage in for signal coverage tasks. Automatic placement of these devices is challenging because of the complex interaction of the signal and environment due to reflection, refraction and scattering. In this work, we iteratively improve the placement of these devices by interleaving device placement and sensing actions, correcting errors in the model of the signal propagation. To this end, we propose a novel factor-graph based belief model which combines the measurements taken by the robot and an analytical light propagation model. This model allows accurately modelling the uncertainty of the light propagation with respect to the obstacles, which greatly improves the informative path planning routine. Additionally, we propose a method for determining when to re-plan the emitter placements to balance a trade-off between information about a specific configuration and frequent updating of the configuration. This method incorporates the uncertainty from belief model to adaptively determine when re-configuration is needed. We find that our system has a 9.8% median error reduction compared to a baseline system in simulations in the most difficult environment. We also run on-robot tests and determine that our system performs favorably compared to the baseline., Comment: Submitted to RA-L
- Published
- 2024
9. Recommendations to promote equity, diversity and inclusion in decentralized clinical trials
- Author
-
Aiyegbusi, Olalekan Lee, Cruz Rivera, Samantha, Kamudoni, Paul, Anderson, Nicola, Collis, Philip, Denniston, Alastair K., Harding, Rosie, Hughes, Sarah E., Khunti, Kamlesh, Kotecha, Dipak, Krumholz, Harlan, Liu, Xiaoxuan, McMullan, Christel, Molony-Oates, Barbara, Monteiro, Joao, Myles, Puja, Rantell, Khadija Rerhou, Soltys, Katherine, Verdi, Ravinder, Wilson, Roger, and Calvert, Melanie J.
- Published
- 2024
- Full Text
- View/download PDF
10. A=3 (e,e') $x_B \geq 1$ cross-section ratios and the isospin structure of short-range correlations
- Author
-
Schmidt, A., Denniston, A. W., Seroka, E. M., Barnea, N., Higinbotham, D. W., Korover, I., Miller, G. A., Piasetzky, E., Strikman, M., Weinstein, L. B., Weiss, R., and Hen, O.
- Subjects
Nuclear Theory ,Nuclear Experiment - Abstract
We study the relation between measured high-$x_B$, high-$Q^2$, Helium-3 to Tritium, $(e,e')$ inclusive-scattering cross-section ratios and the relative abundance of high-momentum neutron-proton ($np$) and proton-proton ($pp$) short-range correlated (SRC) nucleon pairs in three-body ($A=3$) nuclei. Analysis of this data using a simple pair-counting cross-section model suggested a much smaller $np/pp$ ratio than previously measured in heavier nuclei, questioning our understanding of $A=3$ nuclei and, by extension, all other nuclei. Here we examine this finding using spectral-function-based cross-section calculations, with both an \textit{ab initio} $A=3$ spectral function and effective Generalized Contact Formalism (GCF) spectral functions using different nucleon-nucleon interaction models. The \textit{ab initio} calculation agrees with the data, showing good understanding of the structure of $A=3$ nuclei. An 8\% uncertainty on the simple pair-counting model, as implied by the difference between it and the \textit{ab initio} calculation, gives a factor of 5 uncertainty in the extracted $np/pp$ ratio. Thus we see no evidence for the claimed ``unexpected structure in the high-momentum wavefunction for hydrogen-3 and helium-3''., Comment: 6 pages, 4 figures
- Published
- 2024
11. Evidence for Modified Quark-Gluon Distributions in Nuclei by Correlated Nucleon Pairs
- Author
-
nCTEQ Collaboration, Denniston, A. W., Jezo, T., Kusina, A., Derakhshanian, N., Duwentaster, P., Hen, O., Keppel, C., Klasen, M., Kovarik, K., Morfin, J. G., Muzakka, K. F., Olness, F. I., Piasetzky, E., Risse, P., Ruiz, R., Schienbein, I., and Yu, J. Y.
- Subjects
High Energy Physics - Phenomenology ,Nuclear Experiment - Abstract
We extend the QCD Parton Model analysis using a factorized nuclear structure model incorporating individual nucleons and pairs of correlated nucleons. Our analysis of high-energy data from lepton Deep-Inelastic Scattering, Drell-Yan and W/Z production simultaneously extracts the universal effective distribution of quarks and gluons inside correlated nucleon pairs, and their nucleus-specific fractions. Such successful extraction of these universal distributions marks a significant advance in our understanding of nuclear structure properties connecting nucleon- and parton-level quantities., Comment: 7 pages, 2 figures, 1 table
- Published
- 2023
12. Effects of Structural Inhomogeneity on Equilibration Processes in Langevin Dynamics
- Author
-
Mozafar, Omid and Denniston, Colin
- Subjects
Condensed Matter - Soft Condensed Matter ,Condensed Matter - Materials Science ,Condensed Matter - Statistical Mechanics ,Physics - Computational Physics - Abstract
In recent decades, computer experiments have led to an accurate and fundamental understanding of atomic and molecular mechanisms in fluids, such as different kinds of relaxation processes toward steady physical states. In this paper, we investigate how exactly the configuration of initial states in a molecular-dynamics simulation can affect the rates of decay toward equilibrium for the widely-known Langevin canonical ensemble. For this purpose, we derive an original expression relating the system relaxation time {\tau}_{sys} and the radial distribution function g(r) in the near-zero and high-density limit. We found that for an initial state which is slightly marginally inhomogeneous in the number density of atoms, the system relaxation time {\tau}_{sys} is much longer than that for the homogeneous case and an increasing function of the Langevin coupling constant, {\gamma}. We also found during structural equilibration, g(r) at large distances approaches 1 from above for the inhomogeneous case and from below for the macroscopically homogeneous one.
- Published
- 2023
- Full Text
- View/download PDF
13. Author Correction: Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines
- Author
-
Martindale, Alexander P. L., Llewellyn, Carrie D., de Visser, Richard O., Ng, Benjamin, Ngai, Victoria, Kale, Aditya U., di Ruffano, Lavinia Ferrante, Golub, Robert M., Collins, Gary S., Moher, David, McCradden, Melissa D., Oakden-Rayner, Lauren, Rivera, Samantha Cruz, Calvert, Melanie, Kelly, Christopher J., Lee, Cecilia S., Yau, Christopher, Chan, An-Wen, Keane, Pearse A., Beam, Andrew L., Denniston, Alastair K., and Liu, Xiaoxuan
- Published
- 2024
- Full Text
- View/download PDF
14. Optical coherence tomography angiography analysis methods: a systematic review and meta-analysis
- Author
-
Courtie, Ella, Kirkpatrick, James Robert Moore, Taylor, Matthew, Faes, Livia, Liu, Xiaoxuan, Logan, Ann, Veenith, Tonny, Denniston, Alastair K., and Blanch, Richard J.
- Published
- 2024
- Full Text
- View/download PDF
15. SNORA69 is up-regulated in the lateral habenula of individuals with major depressive disorder
- Author
-
Lin, Rixing, Mitsuhashi, Haruka, Fiori, Laura M., Denniston, Ryan, Ibrahim, El Cherif, Belzung, Catherine, Mechawar, Naguib, and Turecki, Gustavo
- Published
- 2024
- Full Text
- View/download PDF
16. Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines
- Author
-
Martindale, Alexander P. L., Llewellyn, Carrie D., de Visser, Richard O., Ng, Benjamin, Ngai, Victoria, Kale, Aditya U., di Ruffano, Lavinia Ferrante, Golub, Robert M., Collins, Gary S., Moher, David, McCradden, Melissa D., Oakden-Rayner, Lauren, Rivera, Samantha Cruz, Calvert, Melanie, Kelly, Christopher J., Lee, Cecilia S., Yau, Christopher, Chan, An-Wen, Keane, Pearse A., Beam, Andrew L., Denniston, Alastair K., and Liu, Xiaoxuan
- Published
- 2024
- Full Text
- View/download PDF
17. Ethnicity data resource in population-wide health records: completeness, coverage and granularity of diversity
- Author
-
Pineda-Moncusí, Marta, Allery, Freya, Delmestri, Antonella, Bolton, Thomas, Nolan, John, Thygesen, Johan H., Handy, Alex, Banerjee, Amitava, Denaxas, Spiros, Tomlinson, Christopher, Denniston, Alastair K., Sudlow, Cathie, Akbari, Ashley, Wood, Angela, Collins, Gary S., Petersen, Irene, Coates, Laura C., Khunti, Kamlesh, Prieto-sAlhambra, Daniel, and Khalid, Sara
- Published
- 2024
- Full Text
- View/download PDF
18. Individual differences in emotion-induced blindness: Are they reliable and what do they measure?
- Author
-
Edwards, Mark, Denniston, David, Bariesheff, Camryn, Wyche, Nicholas J., and Goodhew, Stephanie C.
- Published
- 2024
- Full Text
- View/download PDF
19. Recommendations to address respondent burden associated with patient-reported outcome assessment
- Author
-
Aiyegbusi, Olalekan Lee, Cruz Rivera, Samantha, Roydhouse, Jessica, Kamudoni, Paul, Alder, Yvonne, Anderson, Nicola, Baldwin, Robert Mitchell, Bhatnagar, Vishal, Black, Jennifer, Bottomley, Andrew, Brundage, Michael, Cella, David, Collis, Philip, Davies, Elin-Haf, Denniston, Alastair K., Efficace, Fabio, Gardner, Adrian, Gnanasakthy, Ari, Golub, Robert M., Hughes, Sarah E., Jeyes, Flic, Kern, Scottie, King-Kallimanis, Bellinda L., Martin, Antony, McMullan, Christel, Mercieca-Bebber, Rebecca, Monteiro, Joao, Peipert, John Devin, Quijano-Campos, Juan Carlos, Quinten, Chantal, Rantell, Khadija Rerhou, Regnault, Antoine, Sasseville, Maxime, Schougaard, Liv Marit Valen, Sherafat-Kazemzadeh, Roya, Snyder, Claire, Stover, Angela M., Verdi, Rav, Wilson, Roger, and Calvert, Melanie J.
- Published
- 2024
- Full Text
- View/download PDF
20. Reducing Network Load via Message Utility Estimation for Decentralized Multirobot Teams
- Author
-
Fernández, Isabel M. Rayas, Denniston, Christopher E., and Sukhatme, Gaurav S.
- Subjects
Computer Science - Robotics ,Computer Science - Multiagent Systems - Abstract
We are motivated by quantile estimation of algae concentration in lakes and how decentralized multirobot teams can effectively tackle this problem. We find that multirobot teams improve performance in this task over single robots, and communication-enabled teams further over communication-deprived teams; however, real robots are resource-constrained, and communication networks cannot support arbitrary message loads, making naive, constant information-sharing but also complex modeling and decision-making infeasible. With this in mind, we propose online, locally computable metrics for determining the utility of transmitting a given message to the other team members and a decision-theoretic approach that chooses to transmit only the most useful messages, using a decentralized and independent framework for maintaining beliefs of other teammates. We validate our approach in simulation on a real-world aquatic dataset, and we show that restricting communication via a utility estimation method based on the expected impact of a message on future teammate behavior results in a 42% decrease in network load while simultaneously decreasing quantile estimation error by 1.84%., Comment: 7 pages, 1 table, 7 figures
- Published
- 2023
21. Dispersion and Orientation patterns in nanorod-infused polymer melts
- Author
-
Afrasiabian, Navid, Balasubramanian, Venkat, and Denniston, Colin
- Subjects
Condensed Matter - Soft Condensed Matter ,Condensed Matter - Materials Science - Abstract
Introducing nanorods into a polymeric matrix can enhance the physical and mechanical properties of the resulting material. In this paper, we focus on understanding the dispersion and orientation patterns of nanorods in an unentangled polymer melt, particularly as a function of nanorod concentration, using Molecular Dynamics (MD) simulations. The system is comprised of flexible polymer chains and multi-thread nanorods that are equilibrated in the NPT ensemble. All interactions are purely repulsive except for those between polymers and rods. Results with attractive versus repulsive polymer-rod interactions are compared and contrasted. The concentration of rods has a direct impact on the phase behaviour of the system. At lower concentrations rods phase separate into nematic clusters, while at higher concentrations more isotropic and less structured rod configurations are observed. A detailed examination of the conformation of the polymer chains near the rod surface shows extension of the chains along the director of the rods (especially within clusters). The dispersion and orientation of the nanorods is a result of the competition between depletion entropic forces responsible for the formation of rod clusters, the enthalpic effects that improve mixing of rods and polymer, and entropic losses of polymers interpenetrating rod clusters., Comment: 16 pages, 15 figures
- Published
- 2023
- Full Text
- View/download PDF
22. Learned Parameter Selection for Robotic Information Gathering
- Author
-
Denniston, Christopher E., Salhotra, Gautam, Kangaslahti, Akseli, Caron, David A., and Sukhatme, Gaurav S.
- Subjects
Computer Science - Robotics - Abstract
When robots are deployed in the field for environmental monitoring they typically execute pre-programmed motions, such as lawnmower paths, instead of adaptive methods, such as informative path planning. One reason for this is that adaptive methods are dependent on parameter choices that are both critical to set correctly and difficult for the non-specialist to choose. Here, we show how to automatically configure a planner for informative path planning by training a reinforcement learning agent to select planner parameters at each iteration of informative path planning. We demonstrate our method with 37 instances of 3 distinct environments, and compare it against pure (end-to-end) reinforcement learning techniques, as well as approaches that do not use a learned model to change the planner parameters. Our method shows a 9.53% mean improvement in the cumulative reward across diverse environments when compared to end-to-end learning based methods; we also demonstrate via a field experiment how it can be readily used to facilitate high performance deployment of an information gathering robot., Comment: 8 pages, Submitted to IROS 2023
- Published
- 2023
23. A Study on Multirobot Quantile Estimation in Natural Environments
- Author
-
Fernández, Isabel M. Rayas, Denniston, Christopher E., and Sukhatme, Gaurav S.
- Subjects
Computer Science - Robotics ,Computer Science - Multiagent Systems - Abstract
Quantiles of a natural phenomena can provide scientists with an important understanding of different spreads of concentrations. When there are several available robots, it may be advantageous to pool resources in a collaborative way to improve performance. A multirobot team can be difficult to practically bring together and coordinate. To this end, we present a study across several axes of the impact of using multiple robots to estimate quantiles of a distribution of interest using an informative path planning formulation. We measure quantile estimation accuracy with increasing team size to understand what benefits result from a multirobot approach in a drone exploration task of analyzing the algae concentration in lakes. We additionally perform an analysis on several parameters, including the spread of robot initial positions, the planning budget, and inter-robot communication, and find that while using more robots generally results in lower estimation error, this benefit is achieved under certain conditions. We present our findings in the context of real field robotic applications and discuss the implications of the results and interesting directions for future work., Comment: 7 pages, 2 tables, 7 figures
- Published
- 2023
24. Fast and Scalable Signal Inference for Active Robotic Source Seeking
- Author
-
Denniston, Christopher E., Peltzer, Oriana, Ott, Joshua, Moon, Sangwoo, Kim, Sung-Kyun, Sukhatme, Gaurav S., Kochenderfer, Mykel J., Schwager, Mac, and Agha-mohammadi, Ali-akbar
- Subjects
Computer Science - Robotics - Abstract
In active source seeking, a robot takes repeated measurements in order to locate a signal source in a cluttered and unknown environment. A key component of an active source seeking robot planner is a model that can produce estimates of the signal at unknown locations with uncertainty quantification. This model allows the robot to plan for future measurements in the environment. Traditionally, this model has been in the form of a Gaussian process, which has difficulty scaling and cannot represent obstacles. %In this work, We propose a global and local factor graph model for active source seeking, which allows the model to scale to a large number of measurements and represent unknown obstacles in the environment. We combine this model with extensions to a highly scalable planner to form a system for large-scale active source seeking. We demonstrate that our approach outperforms baseline methods in both simulated and real robot experiments., Comment: 6 pages, Submitted to ICRA 2023 - Contains Appendix
- Published
- 2023
25. Aetiology of Pleural Effusions in a Large Multicentre Cohort: Variation Between Outpatients and Inpatients
- Author
-
Asfandyar Yousuf, Sophie Holland, Junyi Zhang, Cheryl Hardy, Madeline Charles‐Rudwick, Fredrik Vivian, Poppy Denniston, Nithin Thoppuram, Andrei Kisseljov, Rakesh K. Panchal, and Eleanor K. Mishra
- Subjects
pleura ,pleural effusions ,pleural fluid ,pleural neoplasm ,Diseases of the respiratory system ,RC705-779 - Abstract
ABSTRACT Introduction This multi‐centre retrospective cohort study aimed to determine whether the cause of an undiagnosed pleural effusion differed depending on if a patient presented as an outpatient or inpatient. Methods A total of 1080 adult patients (556 inpatients and 524 outpatients) presenting primarily with an undiagnosed pleural effusion from 1 January 2021 to 31 December 2022 from four UK hospitals were included. Results We found malignant effusions were more common in outpatients compared to inpatients (48.3% vs. 36.0% p
- Published
- 2024
- Full Text
- View/download PDF
26. First Observation of Large Missing-Momentum (e,e'p) Cross-Section Scaling and the onset of Correlated-Pair Dominance in Nuclei
- Author
-
Korover, I., Denniston, A. W., Kiral, A., Schmidt, A., Lovato, A., Rocco, N., Nikolakopoulos, A., Weinstein, L. B., Piasetzky, E., Hen, O., and Collaboration, the CLAS
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
We report the first measurement of $x_B$-scaling in $(e,e'p)$ cross-section ratios off nuclei relative to deuterium at large missing-momentum of $350 \leq p_{miss} \leq 600$ MeV/c. The observed scaling extends over a kinematic range of $0.7 \leq x_B \leq 1.8$, which is significantly wider than $1.4 \leq x_B \leq 1.8$ previously observed for inclusive $(e,e')$ cross-section ratios. The $x_B$-integrated cross-section ratios become constant (i.e., scale) beginning at $p_{miss}\approx k_F$, the nuclear Fermi momentum. Comparing with theoretical calculations we find good agreement with Generalized Contact Formalism calculations for high missing-momentum ($> 375$ MeV/c), suggesting the observed scaling results from interacting with nucleons in short-range correlated (SRC) pairs. For low missing-momenta, mean-field calculations show good agreement with the data for $p_{miss}\le k_F$, and suggest that contributions to the measured cross-section ratios from scattering off single, un-correlated, nucleons are non-negligible up to $p_{miss}\approx 350$ MeV/c. Therefore, SRCs become dominant in nuclei at $p_{miss}\approx 350$ MeV/c, well above the nuclear Fermi Surface of $k_F \approx 250$ MeV/c., Comment: 7 pages, 4 figures and supplementary materials
- Published
- 2022
- Full Text
- View/download PDF
27. Optical coherence tomography angiography analysis methods: a systematic review and meta-analysis
- Author
-
Ella Courtie, James Robert Moore Kirkpatrick, Matthew Taylor, Livia Faes, Xiaoxuan Liu, Ann Logan, Tonny Veenith, Alastair K. Denniston, and Richard J. Blanch
- Subjects
Medicine ,Science - Abstract
Abstract Optical coherence tomography angiography (OCTA) is widely used for non-invasive retinal vascular imaging, but the OCTA methods used to assess retinal perfusion vary. We evaluated the different methods used to assess retinal perfusion between OCTA studies. MEDLINE and Embase were searched from 2014 to August 2021. We included prospective studies including ≥ 50 participants using OCTA to assess retinal perfusion in either global retinal or systemic disorders. Risk of bias was assessed using the National Institute of Health quality assessment tool for observational cohort and cross-sectional studies. Heterogeneity of data was assessed by Q statistics, Chi-square test, and I2 index. Of the 5974 studies identified, 191 studies were included in this evaluation. The selected studies employed seven OCTA devices, six macula volume dimensions, four macula subregions, nine perfusion analyses, and five vessel layer definitions, totalling 197 distinct methods of assessing macula perfusion and over 7000 possible combinations. Meta-analysis was performed on 88 studies reporting vessel density and foveal avascular zone area, showing lower retinal perfusion in patients with diabetes mellitus than in healthy controls, but with high heterogeneity. Heterogeneity was lowest and reported vascular effects strongest in superficial capillary plexus assessments. Systematic review of OCTA studies revealed massive heterogeneity in the methods employed to assess retinal perfusion, supporting calls for standardisation of methodology.
- Published
- 2024
- Full Text
- View/download PDF
28. SNORA69 is up-regulated in the lateral habenula of individuals with major depressive disorder
- Author
-
Rixing Lin, Haruka Mitsuhashi, Laura M. Fiori, Ryan Denniston, El Cherif Ibrahim, Catherine Belzung, Naguib Mechawar, and Gustavo Turecki
- Subjects
Medicine ,Science - Abstract
Abstract Major depressive disorder (MDD) is a complex and potentially debilitating illness whose etiology and pathology remains unclear. Non-coding RNAs have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified small nucleolar RNA (snoRNA) expression by small RNA sequencing in the lateral habenula (LHb) of individuals with MDD (n = 15) and psychiatrically-healthy controls (n = 15). We uncovered five snoRNAs that exhibited differential expression between MDD and controls (FDR
- Published
- 2024
- Full Text
- View/download PDF
29. Present and Future of SLAM in Extreme Underground Environments
- Author
-
Ebadi, Kamak, Bernreiter, Lukas, Biggie, Harel, Catt, Gavin, Chang, Yun, Chatterjee, Arghya, Denniston, Christopher E., Deschênes, Simon-Pierre, Harlow, Kyle, Khattak, Shehryar, Nogueira, Lucas, Palieri, Matteo, Petráček, Pavel, Petrlík, Matěj, Reinke, Andrzej, Krátký, Vít, Zhao, Shibo, Agha-mohammadi, Ali-akbar, Alexis, Kostas, Heckman, Christoffer, Khosoussi, Kasra, Kottege, Navinda, Morrell, Benjamin, Hutter, Marco, Pauling, Fred, Pomerleau, François, Saska, Martin, Scherer, Sebastian, Siegwart, Roland, Williams, Jason L., and Carlone, Luca
- Subjects
Computer Science - Robotics - Abstract
This paper reports on the state of the art in underground SLAM by discussing different SLAM strategies and results across six teams that participated in the three-year-long SubT competition. In particular, the paper has four main goals. First, we review the algorithms, architectures, and systems adopted by the teams; particular emphasis is put on lidar-centric SLAM solutions (the go-to approach for virtually all teams in the competition), heterogeneous multi-robot operation (including both aerial and ground robots), and real-world underground operation (from the presence of obscurants to the need to handle tight computational constraints). We do not shy away from discussing the dirty details behind the different SubT SLAM systems, which are often omitted from technical papers. Second, we discuss the maturity of the field by highlighting what is possible with the current SLAM systems and what we believe is within reach with some good systems engineering. Third, we outline what we believe are fundamental open problems, that are likely to require further research to break through. Finally, we provide a list of open-source SLAM implementations and datasets that have been produced during the SubT challenge and related efforts, and constitute a useful resource for researchers and practitioners., Comment: 21 pages including references. This survey paper is submitted to IEEE Transactions on Robotics for pre-approval
- Published
- 2022
30. Past, present, and future of the South Asian monsoon
- Author
-
Ummenhofer, Caroline C., primary, Geen, Ruth, additional, Denniston, Rhawn F., additional, and Rao, Mukund Palat, additional
- Published
- 2024
- Full Text
- View/download PDF
31. AI as a Medical Device Adverse Event Reporting in Regulatory Databases: Protocol for a Systematic Review
- Author
-
Aditya U Kale, Riya Dattani, Ashley Tabansi, Henry David Jeffry Hogg, Russell Pearson, Ben Glocker, Su Golder, Justin Waring, Xiaoxuan Liu, David J Moore, and Alastair K Denniston
- Subjects
Medicine ,Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
BackgroundThe reporting of adverse events (AEs) relating to medical devices is a long-standing area of concern, with suboptimal reporting due to a range of factors including a failure to recognize the association of AEs with medical devices, lack of knowledge of how to report AEs, and a general culture of nonreporting. The introduction of artificial intelligence as a medical device (AIaMD) requires a robust safety monitoring environment that recognizes both generic risks of a medical device and some of the increasingly recognized risks of AIaMD (such as algorithmic bias). There is an urgent need to understand the limitations of current AE reporting systems and explore potential mechanisms for how AEs could be detected, attributed, and reported with a view to improving the early detection of safety signals. ObjectiveThe systematic review outlined in this protocol aims to yield insights into the frequency and severity of AEs while characterizing the events using existing regulatory guidance. MethodsPublicly accessible AE databases will be searched to identify AE reports for AIaMD. Scoping searches have identified 3 regulatory territories for which public access to AE reports is provided: the United States, the United Kingdom, and Australia. AEs will be included for analysis if an artificial intelligence (AI) medical device is involved. Software as a medical device without AI is not within the scope of this review. Data extraction will be conducted using a data extraction tool designed for this review and will be done independently by AUK and a second reviewer. Descriptive analysis will be conducted to identify the types of AEs being reported, and their frequency, for different types of AIaMD. AEs will be analyzed and characterized according to existing regulatory guidance. ResultsScoping searches are being conducted with screening to begin in April 2024. Data extraction and synthesis will commence in May 2024, with planned completion by August 2024. The review will highlight the types of AEs being reported for different types of AI medical devices and where the gaps are. It is anticipated that there will be particularly low rates of reporting for indirect harms associated with AIaMD. ConclusionsTo our knowledge, this will be the first systematic review of 3 different regulatory sources reporting AEs associated with AIaMD. The review will focus on real-world evidence, which brings certain limitations, compounded by the opacity of regulatory databases generally. The review will outline the characteristics and frequency of AEs reported for AIaMD and help regulators and policy makers to continue developing robust safety monitoring processes. International Registered Report Identifier (IRRID)PRR1-10.2196/48156
- Published
- 2024
- Full Text
- View/download PDF
32. Detecting Algorithmic Errors and Patient Harms for AI-Enabled Medical Devices in Randomized Controlled Trials: Protocol for a Systematic Review
- Author
-
Aditya U Kale, Henry David Jeffry Hogg, Russell Pearson, Ben Glocker, Su Golder, April Coombe, Justin Waring, Xiaoxuan Liu, David J Moore, and Alastair K Denniston
- Subjects
Medicine ,Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
BackgroundArtificial intelligence (AI) medical devices have the potential to transform existing clinical workflows and ultimately improve patient outcomes. AI medical devices have shown potential for a range of clinical tasks such as diagnostics, prognostics, and therapeutic decision-making such as drug dosing. There is, however, an urgent need to ensure that these technologies remain safe for all populations. Recent literature demonstrates the need for rigorous performance error analysis to identify issues such as algorithmic encoding of spurious correlations (eg, protected characteristics) or specific failure modes that may lead to patient harm. Guidelines for reporting on studies that evaluate AI medical devices require the mention of performance error analysis; however, there is still a lack of understanding around how performance errors should be analyzed in clinical studies, and what harms authors should aim to detect and report. ObjectiveThis systematic review will assess the frequency and severity of AI errors and adverse events (AEs) in randomized controlled trials (RCTs) investigating AI medical devices as interventions in clinical settings. The review will also explore how performance errors are analyzed including whether the analysis includes the investigation of subgroup-level outcomes. MethodsThis systematic review will identify and select RCTs assessing AI medical devices. Search strategies will be deployed in MEDLINE (Ovid), Embase (Ovid), Cochrane CENTRAL, and clinical trial registries to identify relevant papers. RCTs identified in bibliographic databases will be cross-referenced with clinical trial registries. The primary outcomes of interest are the frequency and severity of AI errors, patient harms, and reported AEs. Quality assessment of RCTs will be based on version 2 of the Cochrane risk-of-bias tool (RoB2). Data analysis will include a comparison of error rates and patient harms between study arms, and a meta-analysis of the rates of patient harm in control versus intervention arms will be conducted if appropriate. ResultsThe project was registered on PROSPERO in February 2023. Preliminary searches have been completed and the search strategy has been designed in consultation with an information specialist and methodologist. Title and abstract screening started in September 2023. Full-text screening is ongoing and data collection and analysis began in April 2024. ConclusionsEvaluations of AI medical devices have shown promising results; however, reporting of studies has been variable. Detection, analysis, and reporting of performance errors and patient harms is vital to robustly assess the safety of AI medical devices in RCTs. Scoping searches have illustrated that the reporting of harms is variable, often with no mention of AEs. The findings of this systematic review will identify the frequency and severity of AI performance errors and patient harms and generate insights into how errors should be analyzed to account for both overall and subgroup performance. Trial RegistrationPROSPERO CRD42023387747; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=387747 International Registered Report Identifier (IRRID)PRR1-10.2196/51614
- Published
- 2024
- Full Text
- View/download PDF
33. Retinal morphological differences in atypical Parkinsonism: A cross-sectional analysis of the AlzEye cohort
- Author
-
S. Patel, O. Bredemeyer, DJ Williamson, RR Struyven, Y. Zhou, AK Denniston, A. Petzold, CA Antoniades, PA Keane, and SK Wagner
- Subjects
Atypical Parkinsonian disorders ,Retina ,Ocular Biomarker ,AlzEye ,OCT ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
Objective: Atypical Parkinsonian syndrome (APS) describes a heterogeneous group of disorders mimicking the clinical presentation of Parkinson disease (PD) but with disparate natural history and pathophysiology. While retinal markers of PD are increasingly described, APS has been afforded less attention possibly owing to its lower prevalence. Here, we investigate retinal morphological differences in individuals with APS in a large real world cohort. Methods: We conducted a cross-sectional analysis of the AlzEye study, a retrospective cohort where ophthalmic data of individuals attending Moorfields Eye Hospital between January 2008 and March 31st 2018 (inclusive) has been linked with systemic disease data through national hospital admissions. Retinal features were extracted from macula-centered color fundus photography (CFP) and optical coherence tomography (OCT) and compared between individuals with APS and those unaffected. Individuals with idiopathic PD were excluded. Retinal neural and vascular features were measured using automated segmentation and analyzed with multivariable-adjusted regression models. Results: Among a cohort of 91,170 patients, there were 51 patients with APS and 91,119 controls. Individuals with APS were older and more likely to have hypertension and diabetes mellitus. After adjusting for age, sex, hypertension and diabetes melitus, individuals with APS had a thinner ganglion cell-inner plexiform layer (-3.95 microns, 95% CI: −7.53, −0.37, p = 0.031) but no difference in other retinoneural or retinovascular indices. Optic nerve cup-to-disc ratio was similar between groups. Conclusion: Our cross-sectional analysis of the AlzEye cohort reveals distinct retinal morphological characteristics in APS compared to healthy controls. The study notably identifies a thinner ganglion cell-inner plexiform layer in APS patients, without accompanying changes in the inner nuclear layer or significant alterations in retinovascular indices and optic nerve cup-disc ratio. These changes are distinct from those observed in PD, where thinning of the inner nuclear layer (INL) is a characteristic feature. Significance: These findings demonstrate a retinal phenotype in APS, markedly different from both healthy controls and idiopathic Parkinson's disease, highlighting the potential of retinal imaging in differentiating neurodegenerative disorders. By establishing a distinct retinal phenotype for APS, our findings underscore the potential of retinal imaging as a valuable, non-invasive diagnostic tool. This advancement is particularly significant for enhancing diagnostic accuracy, facilitating early detection, and offering a window into the underlying disease mechanisms in APS, thereby aiding in the development of targeted therapeutic interventions and personalized patient care strategies.
- Published
- 2024
- Full Text
- View/download PDF
34. LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments
- Author
-
Chang, Yun, Ebadi, Kamak, Denniston, Christopher E., Ginting, Muhammad Fadhil, Rosinol, Antoni, Reinke, Andrzej, Palieri, Matteo, Shi, Jingnan, Chatterjee, Arghya, Morrell, Benjamin, Agha-mohammadi, Ali-akbar, and Carlone, Luca
- Subjects
Computer Science - Robotics ,Computer Science - Multiagent Systems - Abstract
Search and rescue with a team of heterogeneous mobile robots in unknown and large-scale underground environments requires high-precision localization and mapping. This crucial requirement is faced with many challenges in complex and perceptually-degraded subterranean environments, as the onboard perception system is required to operate in off-nominal conditions (poor visibility due to darkness and dust, rugged and muddy terrain, and the presence of self-similar and ambiguous scenes). In a disaster response scenario and in the absence of prior information about the environment, robots must rely on noisy sensor data and perform Simultaneous Localization and Mapping (SLAM) to build a 3D map of the environment and localize themselves and potential survivors. To that end, this paper reports on a multi-robot SLAM system developed by team CoSTAR in the context of the DARPA Subterranean Challenge. We extend our previous work, LAMP, by incorporating a single-robot front-end interface that is adaptable to different odometry sources and lidar configurations, a scalable multi-robot front-end to support inter- and intra-robot loop closure detection for large scale environments and multi-robot teams, and a robust back-end equipped with an outlier-resilient pose graph optimization based on Graduated Non-Convexity. We provide a detailed ablation study on the multi-robot front-end and back-end, and assess the overall system performance in challenging real-world datasets collected across mines, power plants, and caves in the United States. We also release our multi-robot back-end datasets (and the corresponding ground truth), which can serve as challenging benchmarks for large-scale underground SLAM.
- Published
- 2022
35. Loop Closure Prioritization for Efficient and Scalable Multi-Robot SLAM
- Author
-
Denniston, Christopher E., Chang, Yun, Reinke, Andrzej, Ebadi, Kamak, Sukhatme, Gaurav S., Carlone, Luca, Morrell, Benjamin, and Agha-mohammadi, Ali-akbar
- Subjects
Computer Science - Robotics - Abstract
Multi-robot SLAM systems in GPS-denied environments require loop closures to maintain a drift-free centralized map. With an increasing number of robots and size of the environment, checking and computing the transformation for all the loop closure candidates becomes computationally infeasible. In this work, we describe a loop closure module that is able to prioritize which loop closures to compute based on the underlying pose graph, the proximity to known beacons, and the characteristics of the point clouds. We validate this system in the context of the DARPA Subterranean Challenge and on numerous challenging underground datasets and demonstrate the ability of this system to generate and maintain a map with low error. We find that our proposed techniques are able to select effective loop closures which results in 51% mean reduction in median error when compared to an odometric solution and 75% mean reduction in median error when compared to a baseline version of this system with no prioritization. We also find our proposed system is able to find a lower error in the mission time of one hour when compared to a system that processes every possible loop closure in four and a half hours. The code and dataset for this work can be found https://github.com/NeBula-Autonomy/LAMP, Comment: 8 pages, Accepted to RA-L/IROS 2022
- Published
- 2022
36. Revealing transparency gaps in publicly available COVID-19 datasets used for medical artificial intelligence development—a systematic review
- Author
-
Alderman, Joseph E, Charalambides, Maria, Sachdeva, Gagandeep, Laws, Elinor, Palmer, Joanne, Lee, Elsa, Menon, Vaishnavi, Malik, Qasim, Vadera, Sonam, Calvert, Melanie, Ghassemi, Marzyeh, McCradden, Melissa D, Ordish, Johan, Mateen, Bilal, Summers, Charlotte, Gath, Jacqui, Matin, Rubeta N, Denniston, Alastair K, and Liu, Xiaoxuan
- Published
- 2024
- Full Text
- View/download PDF
37. Consolidated Health Economic Evaluation Reporting Standards for Interventions That Use Artificial Intelligence (CHEERS-AI)
- Author
-
Arbour, Sylvie, Asche, Carl, Ashurst, Carolyn, Balkanyi, Laszlo, Bennett, Hayley, Boros, Gerzson, Boyce, Rebecca, Carswell, Chris, Chaiyakunapruk, Nathorn, Chhatwal, Jagpreet, Ciani, Oriana, Collins, Gary, Dawson, David, Vanness, David, Di Bidino, Rossella, Faulding, Susan, Felizzi, Federico, Haig, Madeleine, Hawkins, James, Hiligsmann, Mikaël, Holst-Kristensen, Annette Willemoes, Isla, Julian, Koffijberg, Erik, Kostyuk, Alexander, Krief, Noemi, Lee, Dawn, Lee, Karen, Lundin, Douglas, Markiewicz-Barreaux, Katarzyna, Mauskopf, Josephine, Moons, Karel, Németh, Bertalan, Petrova, Guenka, Pwu, Raoh-Fang (Jasmine), Rejon-Parrilla, Juan Carlos, Rogers, Gabriel, Sampson, Chris, Springborg, Astrid Aaen, Steuten, Lotte, Sutherland, Eric, Suutala, Jaakko, Theisen, Daniel, Thompson, Alexander, van Gemert-Pijnen, Lisette, Walker, Thomas, Wilson, Ed, Elvidge, Jamie, Hawksworth, Claire, Avşar, Tuba Saygın, Zemplenyi, Antal, Chalkidou, Anastasia, Petrou, Stavros, Petykó, Zsuzsanna, Srivastava, Divya, Chandra, Gunjan, Delaye, Julien, Denniston, Alastair, Gomes, Manuel, Knies, Saskia, Nousios, Petros, Siirtola, Pekka, Wang, Junfeng, and Dawoud, Dalia
- Published
- 2024
- Full Text
- View/download PDF
38. Ethnicity data resource in population-wide health records: completeness, coverage and granularity of diversity
- Author
-
Marta Pineda-Moncusí, Freya Allery, Antonella Delmestri, Thomas Bolton, John Nolan, Johan H. Thygesen, Alex Handy, Amitava Banerjee, Spiros Denaxas, Christopher Tomlinson, Alastair K. Denniston, Cathie Sudlow, Ashley Akbari, Angela Wood, Gary S. Collins, Irene Petersen, Laura C. Coates, Kamlesh Khunti, Daniel Prieto-sAlhambra, Sara Khalid, and on behalf of the CVD-COVID-UK/COVID-IMPACT Consortium
- Subjects
Science - Abstract
Abstract Intersectional social determinants including ethnicity are vital in health research. We curated a population-wide data resource of self-identified ethnicity data from over 60 million individuals in England primary care, linking it to hospital records. We assessed ethnicity data in terms of completeness, consistency, and granularity and found one in ten individuals do not have ethnicity information recorded in primary care. By linking to hospital records, ethnicity data were completed for 94% of individuals. By reconciling SNOMED-CT concepts and census-level categories into a consistent hierarchy, we organised more than 250 ethnicity sub-groups including and beyond “White”, “Black”, “Asian”, “Mixed” and “Other, and found them to be distributed in proportions similar to the general population. This large observational dataset presents an algorithmic hierarchy to represent self-identified ethnicity data collected across heterogeneous healthcare settings. Accurate and easily accessible ethnicity data can lead to a better understanding of population diversity, which is important to address disparities and influence policy recommendations that can translate into better, fairer health for all.
- Published
- 2024
- Full Text
- View/download PDF
39. Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines
- Author
-
Alexander P. L. Martindale, Carrie D. Llewellyn, Richard O. de Visser, Benjamin Ng, Victoria Ngai, Aditya U. Kale, Lavinia Ferrante di Ruffano, Robert M. Golub, Gary S. Collins, David Moher, Melissa D. McCradden, Lauren Oakden-Rayner, Samantha Cruz Rivera, Melanie Calvert, Christopher J. Kelly, Cecilia S. Lee, Christopher Yau, An-Wen Chan, Pearse A. Keane, Andrew L. Beam, Alastair K. Denniston, and Xiaoxuan Liu
- Subjects
Science - Abstract
Abstract The Consolidated Standards of Reporting Trials extension for Artificial Intelligence interventions (CONSORT-AI) was published in September 2020. Since its publication, several randomised controlled trials (RCTs) of AI interventions have been published but their completeness and transparency of reporting is unknown. This systematic review assesses the completeness of reporting of AI RCTs following publication of CONSORT-AI and provides a comprehensive summary of RCTs published in recent years. 65 RCTs were identified, mostly conducted in China (37%) and USA (18%). Median concordance with CONSORT-AI reporting was 90% (IQR 77–94%), although only 10 RCTs explicitly reported its use. Several items were consistently under-reported, including algorithm version, accessibility of the AI intervention or code, and references to a study protocol. Only 3 of 52 included journals explicitly endorsed or mandated CONSORT-AI. Despite a generally high concordance amongst recent AI RCTs, some AI-specific considerations remain systematically poorly reported. Further encouragement of CONSORT-AI adoption by journals and funders may enable more complete adoption of the full CONSORT-AI guidelines.
- Published
- 2024
- Full Text
- View/download PDF
40. Directrices para presentación de informes de ensayos clínicos sobre intervenciones con inteligencia artificial: extensión CONSORT-AI
- Author
-
Xiaoxuan Liu, Samantha Cruz Rivera, David Moher, Melanie J. Calvert, Alastair K. Denniston, and Grupo de Trabajo SPIRIT-AI y CONSORT-AI
- Subjects
Medicine ,Arctic medicine. Tropical medicine ,RC955-962 ,Public aspects of medicine ,RA1-1270 - Abstract
La declaración CONSORT 2010 proporciona unas directrices mínimas para informar sobre los ensayos clínicos aleatorizados. Su uso generalizado ha sido fundamental para garantizar la transparencia en la evaluación de nuevas intervenciones. Más recientemente, se ha reconocido cada vez más que las intervenciones con inteligencia artificial (IA) deben someterse a una evaluación rigurosa y prospectiva para demostrar su impacto en la salud. La extensión CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) es una nueva pauta de información para los ensayos clínicos que evalúan intervenciones con un componente de IA, esta se desarrolló en paralelo con su declaración complementaria para los protocolos de ensayos clínicos: SPIRIT-AI (Standard Protocol Items – Artificial Intelligence: Recomendaciones para ensayos clínicos de intervención - Inteligencia Artificial). Ambas directrices se desarrollaron a través de un proceso de consenso por etapas que incluía la revisión de la literatura y la consulta a expertos para generar 29 elementos candidatos, que fueron evaluados por un grupo internacional de múltiples partes interesadas en una encuesta Delphi de dos etapas (103 partes interesadas congregados en una reunión de consenso de dos días (31 partes interesadas) y refinados a través de una lista de verificación piloto (34 participantes). La ampliación del CONSORT-AI incluye 14 nuevos elementos que se consideraron lo suficientemente importantes para las intervenciones de IA como para que se informen de forma rutinaria, además de los elementos básicos del CONSORT 2010. CONSORT-AI recomienda que los investigadores proporcionen descripciones claras de la intervención de IA, incluyendo las instrucciones y las habilidades requeridas para su uso, el entorno en el que se integra la intervención de IA, el manejo de los datos de entrada y los datos de salida de la intervención de IA, la interacción entre el ser humano y la IA y la provisión de un análisis de los casos de error. CONSORT-AI ayudará a promover la transparencia y la exhaustividad en los informes de los ensayos clínicos de las intervenciones de AI, también ayudará a los editores y revisores, así como a los lectores en general, a entender, interpretar y valorar críticamente la calidad del diseño del ensayo clínico y el riesgo de sesgo en los resultados comunicados.
- Published
- 2024
- Full Text
- View/download PDF
41. Directrices para los protocolos de ensayos clínicos de intervenciones con inteligencia artificial: la extensión SPIRIT-AI
- Author
-
Samantha Cruz Rivera, Xiaoxuan Liu, An-Wen Chan, Alastair K. Denniston, Melanie J. Calvert, Grupo de Trabajo SPIRIT-AI y CONSORT-AI, Grupo Directivo SPIRIT-AI y CONSORT-AI, and Grupo de Consenso SPIRIT-AI y CONSORT-AI
- Subjects
Medicine ,Arctic medicine. Tropical medicine ,RC955-962 ,Public aspects of medicine ,RA1-1270 - Abstract
La declaración SPIRIT 2013 tiene como objetivo mejorar la exhaustividad de los informes de los protocolos de los ensayos clínicos proporcionando recomendaciones basadas en la evidencia para el conjunto mínimo de elementos que deben abordarse. Esta guía ha sido fundamental para promover la evaluación transparente de nuevas intervenciones. Más recientemente, se ha reconocido cada vez más que las intervenciones con inteligencia artificial (IA) deben someterse a una evaluación rigurosa y prospectiva para demostrar su impacto en los resultados médicos. La extensión SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence, por sus siglas en inglés) es una nueva directriz para el reporte de los protocolos de ensayos clínicos que evalúan intervenciones con un componente de IA. Esta directriz se desarrolló en paralelo con su declaración complementaria para los informes de ensayos clínicos: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Ambas directrices se desarrollaron a través de un proceso de consenso por etapas que incluía la revisión de la literatura y la consulta a expertos para generar 26 ítems candidatos, que fueron consultados por un grupo internacional de múltiples partes interesadas en una encuesta Delphi de dos etapas (103 partes interesadas), acordados en una reunión de consenso (31 partes interesadas) y refinados a través de una lista de verificación piloto (34 participantes). La ampliación de SPIRIT-AI incluye 15 nuevos elementos que se consideraron suficientemente importantes para los protocolos de los ensayos clínicos con intervenciones de IA. Estos nuevos ítems deben ser reportados rutinariamente además de los ítems centrales de SPIRIT 2013. SPIRIT-AI recomienda que los investigadores proporcionen descripciones claras de la intervención de IA, incluyendo las instrucciones y las habilidades necesarias para su uso, el entorno en el que se integrará la intervención de IA, las consideraciones para el manejo de los datos de entrada y salida, la interacción entre el ser humano y la IA y el análisis de los casos de error. SPIRIT-AI ayudará a promover la transparencia y la exhaustividad de los protocolos de los ensayos clínicos de las intervenciones de IA. Su uso ayudará a los editores y revisores, así como a los lectores en general, a comprender, interpretar y valorar críticamente el diseño y el riesgo de sesgo de un futuro ensayo clínico.
- Published
- 2024
- Full Text
- View/download PDF
42. Informative Path Planning to Estimate Quantiles for Environmental Analysis
- Author
-
Fernández, Isabel M. Rayas, Denniston, Christopher E., Caron, David A., and Sukhatme, Gaurav S.
- Subjects
Computer Science - Robotics - Abstract
Scientists interested in studying natural phenomena often take physical specimens from locations in the environment for later analysis. These analysis locations are typically specified by expert heuristics. Instead, we propose to choose locations for scientific analysis by using a robot to perform an informative path planning survey. The survey results in a list of locations that correspond to the quantile values of the phenomenon of interest. We develop a robot planner using novel objective functions to improve the estimates of the quantile values over time and an approach to find locations which correspond to the quantile values. We test our approach in four different environments using previously collected aquatic data and validate it in a field trial. Our proposed approach to estimate quantiles has a 10.2% mean reduction in median error when compared to a baseline approach which attempts to maximize spatial coverage. Additionally, when localizing these values in the environment, we see a 15.7% mean reduction in median error when using cross-entropy with our loss function compared to a baseline., Comment: 8 pages, 9 figures
- Published
- 2022
43. The value of standards for health datasets in artificial intelligence-based applications
- Author
-
Arora, Anmol, Alderman, Joseph E., Palmer, Joanne, Ganapathi, Shaswath, Laws, Elinor, McCradden, Melissa D., Oakden-Rayner, Lauren, Pfohl, Stephen R., Ghassemi, Marzyeh, McKay, Francis, Treanor, Darren, Rostamzadeh, Negar, Mateen, Bilal, Gath, Jacqui, Adebajo, Adewole O., Kuku, Stephanie, Matin, Rubeta, Heller, Katherine, Sapey, Elizabeth, Sebire, Neil J., Cole-Lewis, Heather, Calvert, Melanie, Denniston, Alastair, and Liu, Xiaoxuan
- Published
- 2023
- Full Text
- View/download PDF
44. A foundation model for generalizable disease detection from retinal images
- Author
-
Zhou, Yukun, Chia, Mark A., Wagner, Siegfried K., Ayhan, Murat S., Williamson, Dominic J., Struyven, Robbert R., Liu, Timing, Xu, Moucheng, Lozano, Mateo G., Woodward-Court, Peter, Kihara, Yuka, Altmann, Andre, Lee, Aaron Y., Topol, Eric J., Denniston, Alastair K., Alexander, Daniel C., and Keane, Pearse A.
- Published
- 2023
- Full Text
- View/download PDF
45. Evaluating patient-reported outcome measures (PROMs) for future clinical trials in adult patients with optic neuritis
- Author
-
Panthagani, Jesse, O’Donovan, Charles, Aiyegbusi, Olalekan Lee, Liu, Xiaoxuan, Bayliss, Susan, Calvert, Melanie, Pesudovs, Konrad, Denniston, Alastair K., Moore, David J., and Braithwaite, Tasanee
- Published
- 2023
- Full Text
- View/download PDF
46. The configuration space of a robotic arm over a graph
- Author
-
Denniston, Derric, Muth, Robert, and Singh, Vikram
- Subjects
Mathematics - Combinatorics ,06A07, 05C12, 05E99, 68R05, 68U05 - Abstract
We investigate the configuration space $\mathcal{S}_{G,b,\ell}$ associated with the movement of a robotic arm of length $\ell$ on a grid over an underlying graph $G$, anchored at a vertex $b \in G$. We study an associated PIP (poset with inconsistent pairs) $\text{IP}_{G,b,\ell}$ consisting of indexed paths on $G$. This PIP acts as a combinatorial model for the robotic arm, and we use $\text{IP}_{G,b,\ell}$ to show that the space $\mathcal{S}_{G,b,\ell}$ is a CAT(0) cubical complex, generalizing work of Ardila, Bastidas, Ceballos, and Guo. This establishes that geodesics exist within the configuration space, and yields explicit algorithms for moving the robotic arm between different configurations in an optimal fashion. We also give a tight bound on the diameter of the robotic arm transition graph (the maximal number of moves necessary to change from one configuration to another) and compute this diameter for a large family of underlying graphs $G$.
- Published
- 2021
47. Adaptive Sampling using POMDPs with Domain-Specific Considerations
- Author
-
Salhotra, Gautam, Denniston, Christopher E., Caron, David A., and Sukhatme, Gaurav S.
- Subjects
Computer Science - Robotics ,Computer Science - Artificial Intelligence - Abstract
We investigate improving Monte Carlo Tree Search based solvers for Partially Observable Markov Decision Processes (POMDPs), when applied to adaptive sampling problems. We propose improvements in rollout allocation, the action exploration algorithm, and plan commitment. The first allocates a different number of rollouts depending on how many actions the agent has taken in an episode. We find that rollouts are more valuable after some initial information is gained about the environment. Thus, a linear increase in the number of rollouts, i.e. allocating a fixed number at each step, is not appropriate for adaptive sampling tasks. The second alters which actions the agent chooses to explore when building the planning tree. We find that by using knowledge of the number of rollouts allocated, the agent can more effectively choose actions to explore. The third improvement is in determining how many actions the agent should take from one plan. Typically, an agent will plan to take the first action from the planning tree and then call the planner again from the new state. Using statistical techniques, we show that it is possible to greatly reduce the number of rollouts by increasing the number of actions taken from a single planning tree without affecting the agent's final reward. Finally, we demonstrate experimentally, on simulated and real aquatic data from an underwater robot, that these improvements can be combined, leading to better adaptive sampling. The code for this work is available at https://github.com/uscresl/AdaptiveSamplingPOMCP, Comment: Accepted at ICRA 2021 6 pages + 1 page Appendix. The first two authors had an equal contribution
- Published
- 2021
48. Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation
- Author
-
Heiden, Eric, Denniston, Christopher E., Millard, David, Ramos, Fabio, and Sukhatme, Gaurav S.
- Subjects
Computer Science - Robotics ,Computer Science - Machine Learning - Abstract
To accurately reproduce measurements from the real world, simulators need to have an adequate model of the physical system and require the parameters of the model be identified. We address the latter problem of estimating parameters through a Bayesian inference approach that approximates a posterior distribution over simulation parameters given real sensor measurements. By extending the commonly used Gaussian likelihood model for trajectories via the multiple-shooting formulation, our chosen particle-based inference algorithm Stein Variational Gradient Descent is able to identify highly nonlinear, underactuated systems. We leverage GPU code generation and differentiable simulation to evaluate the likelihood and its gradient for many particles in parallel. Our algorithm infers non-parametric distributions over simulation parameters more accurately than comparable baselines and handles constraints over parameters efficiently through gradient-based optimization. We evaluate estimation performance on several physical experiments. On an underactuated mechanism where a 7-DOF robot arm excites an object with an unknown mass configuration, we demonstrate how our inference technique can identify symmetries between the parameters and provide highly accurate predictions. Project website: https://uscresl.github.io/prob-diff-sim, Comment: Extended version. To appear at ICRA 2022
- Published
- 2021
49. Periodontitis and Outer Retinal Thickness: a Cross-Sectional Analysis of the United Kingdom Biobank Cohort
- Author
-
Allen, Naomi, Aslam, Tariq, Atan, Denize, Balaskas, Konsantinos, Barman, Sarah A., Barrett, Jenny H., Bishop, Paul, Black, Graeme, Braithwaite, Tasanee, Carare, Roxana O., Chakravarthy, Usha, Chan, Michelle, Chua, Sharon Y.L., Day, Alexander, Desai, Parul, Dhillon, Bal, Dick, Andrew D., Doney, Alexander, Egan, Cathy, Ennis, Sarah, Foster, Paul, Fruttiger, Marcus, Gallacher, John E.J., Garway-Heath, David F., Gibson, Jane, Guggenheim, Jeremy A., Hammond, Chris J., Hardcastle, Alison, Harding, Simon P., Hogg, Ruth E., Hysi, Pirro, Keane, Pearse A., Khaw, Sir Peng T., Khawaja, Anthony P., Lascaratos, Gerassimos, Littlejohns, Thoams, Lotery, Andrew J., Luben, Robert, Luthert, Phil, Macgillivray, Tom, Mackie, Sarah, McGuinness, Bernadette, McKay, Gareth J., McKibbin, Martin, Moore, Tony, Morgan, James E., O’Sullivan, Eoin, Oram, Richard, Owen, Chris G., Patel, Praveen, Paterson, Euan, Peto, Tunde, Petzold, Axel, Rahi, Jugnoo S., Rudnikca, Alicja R., Sattar, Naveed, Self, Jay, Sergouniotis, Panagiotis, Sivaprasad, Sobha, Steel, David, Stratton, Irene, Strouthidis, Nicholas, Sudlow, Cathie, Sun, Zihan, Tapp, Robyn, Thomas, Dhanes, Trucco, Emanuele, Tufail, Adnan, Vitart, Veronique, Viswanathan, Ananth C., Weedon, Mike, Williams, Cathy, Williams, Katie, Woodside, Jayne V., Yates, Max M., Yip, Jennifer, Zheng, Yalin, Wagner, Siegfried K., Patel, Praveen J., Huemer, Josef, Khalid, Hagar, Stuart, Kelsey V., Chu, Colin J., Williamson, Dominic J., Struyven, Robbert R., Romero-Bascones, David, Foster, Paul J., Balaskas, Konstantinos, Cortina-Borja, Mario, Chapple, Iain, Dietrich, Thomas, and Denniston, Alastair K.
- Published
- 2024
- Full Text
- View/download PDF
50. Retinal morphological differences in atypical Parkinsonism: A cross-sectional analysis of the AlzEye cohort
- Author
-
Patel, S., Bredemeyer, O., Williamson, DJ, Struyven, RR, Zhou, Y., Denniston, AK, Petzold, A., Antoniades, CA, Keane, PA, and Wagner, SK
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.