7 results on '"A. Borovlev, Y"'
Search Results
2. New Limit for Neutrinoless Double-Beta Decay of $^{100}$Mo from the CUPID-Mo Experiment
- Author
-
Armengaud E., Augier C., Barabash A. S., Bellini F., Benato G., Benoit A., Beretta M., Berge L., Billard J., Borovlev Y. A., Bourgeois C., Brudanin V. B., Camus P., Cardani L., Casali N., Cazes A., Chapellier M., Charlieux F., Chiesa D., De Combarieu M., Dafinei I., Danevich F. A., De Jesus M., Dixon T., Dumoulin L., Eitel K., Ferri F., Fujikawa B. K., Gascon J., Gironi L., Giuliani A., Grigorieva V. D., Gros M., Guerard E., Helis D. L., Huang H. Z., Huang R., Johnston J., Juillard A., Khalife H., Kleifges M., Kobychev V. V., Kolomensky Y. G., Konovalov S. I., Leder A., Loaiza P., Ma L., Makarov E. P., De Marcillac P., Mariam R., Marini L., Marnieros S., Misiak D., Navick X. -F., Nones C., Norman E. B., Novati V., Olivieri E., Ouellet J. L., Pagnanini L., Pari P., Pattavina L., Paul B., Pavan M., Peng H., Pessina G., Pirro S., Poda D. V., Polischuk O. G., Pozzi S., Previtali E., Redon T., Rojas A., Rozov S., Rusconi C., Sanglard V., Scarpaci J. A., Schaffner K., Schmidt B., Shen Y., Shlegel V. N., Siebenborn B., Singh V., Tomei C., Tretyak V. I., Umatov V. I., Vagneron L., Velazquez M., Welliver B., Winslow L., Xue M., Yakushev E., Zarytskyy M., Zolotarova A. S., Armengaud, E, Augier, C, Barabash, A, Bellini, F, Benato, G, Benoit, A, Beretta, M, Berge, L, Billard, J, Borovlev, Y, Bourgeois, C, Brudanin, V, Camus, P, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Charlieux, F, Chiesa, D, De Combarieu, M, Dafinei, I, Danevich, F, De Jesus, M, Dixon, T, Dumoulin, L, Eitel, K, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Guerard, E, Helis, D, Huang, H, Huang, R, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Leder, A, Loaiza, P, Ma, L, Makarov, E, De Marcillac, P, Mariam, R, Marini, L, Marnieros, S, Misiak, D, Navick, X, Nones, C, Norman, E, Novati, V, Olivieri, E, Ouellet, J, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Pozzi, S, Previtali, E, Redon, T, Rojas, A, Rozov, S, Rusconi, C, Sanglard, V, Scarpaci, J, Schaffner, K, Schmidt, B, Shen, Y, Shlegel, V, Siebenborn, B, Singh, V, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velazquez, M, Welliver, B, Winslow, L, Xue, M, Yakushev, E, Zarytskyy, M, and Zolotarova, A
- Subjects
100 Mo ,Neutrinoless ,double beta decay ,FOS: Physical sciences ,Neutrinoless double beta decay ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
The CUPID-Mo experiment at the Laboratoire Souterrain de Modane (France) is a demonstrator for CUPID, the next-generation ton-scale cryogenic $0\nu\beta\beta$ experiment. It consists of a 4.2 kg array of 20 enriched Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers to search for the lepton number violating process of $0\nu\beta\beta$ decay in $^{100}$Mo. With more than one year of operation (2.16 kg$\times$yr of physics data), no event in the region of interest and hence no evidence for $0\nu\beta\beta$ is observed. We report a new limit on the half-life of $0\nu\beta\beta$ decay in $^{100}$Mo of $T_{1/2} > 1.5 \times 10^{24}\,$yr at 90 % C.I. The limit corresponds to an effective Majorana neutrino mass $\langle m_{\beta\beta} \rangle$ $
- Published
- 2020
- Full Text
- View/download PDF
3. Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique
- Author
-
Borovlev, Y. A., Ivannikova, N. V., Shlegel, V. N., Vasiliev, Y. V., and Gusev, V. A.
- Published
- 2001
- Full Text
- View/download PDF
4. Final results on the $$0\nu \beta \beta $$ decay half-life limit of $$^{100}$$Mo from the CUPID-Mo experiment
- Author
-
C. Augier, A. S. Barabash, F. Bellini, G. Benato, M. Beretta, L. Bergé, J. Billard, Yu. A. Borovlev, L. Cardani, N. Casali, A. Cazes, M. Chapellier, D. Chiesa, I. Dafinei, F. A. Danevich, M. De Jesus, P. de Marcillac, T. Dixon, L. Dumoulin, K. Eitel, F. Ferri, B. K. Fujikawa, J. Gascon, L. Gironi, A. Giuliani, V. D. Grigorieva, M. Gros, D. L. Helis, H. Z. Huang, R. Huang, L. Imbert, J. Johnston, A. Juillard, H. Khalife, M. Kleifges, V. V. Kobychev, Yu. G. Kolomensky, S. I. Konovalov, P. Loaiza, L. Ma, E. P. Makarov, R. Mariam, L. Marini, S. Marnieros, X.-F. Navick, C. Nones, E. B. Norman, E. Olivieri, J. L. Ouellet, L. Pagnanini, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, S. Pirro, D. V. Poda, O. G. Polischuk, S. Pozzi, E. Previtali, Th. Redon, A. Rojas, S. Rozov, V. Sanglard, J. A. Scarpaci, B. Schmidt, Y. Shen, V. N. Shlegel, V. Singh, C. Tomei, V. I. Tretyak, V. I. Umatov, L. Vagneron, M. Velázquez, B. Welliver, L. Winslow, M. Xue, E. Yakushev, M. Zarytskyy, A. S. Zolotarova, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Souterrain de Modane (LSM - UMR 6417), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Augier, C, Barabash, A, Bellini, F, Benato, G, Beretta, M, Berge, L, Billard, J, Borovlev, Y, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Chiesa, D, Dafinei, I, Danevich, F, De Jesus, M, de Marcillac, P, Dixon, T, Dumoulin, L, Eitel, K, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Helis, D, Huang, H, Huang, R, Imbert, L, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Loaiza, P, Ma, L, Makarov, E, Mariam, R, Marini, L, Marnieros, S, Navick, X, Nones, C, Norman, E, Olivieri, E, Ouellet, J, Pagnanini, L, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Pozzi, S, Previtali, E, Redon, T, Rojas, A, Rozov, S, Sanglard, V, Scarpaci, J, Schmidt, B, Shen, Y, Shlegel, V, Singh, V, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velazquez, M, Welliver, B, Winslow, L, Xue, M, Yakushev, E, Zarytskyy, M, and Zolotarova, A
- Subjects
radiopurity ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Double-beta decay ,energy spectrum ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,angular momentum ,thermal ,X-ray ,cryogenic detector ,enriched materials ,muon ,cryogenic detectors ,calorimeter ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,scintillating calorimeter ,scintillator ,100Mo ,Lithium molybdate ,high performance ,particle identification ,low background ,dimension: 2 ,100 Mo ,Majorana neutrino ,Engineering (miscellaneous) ,lepton number: violation ,Nuclear Experiment ,scintillation counter ,background ,neutrino: Majorana: mass ,nucleus ,temperature ,neutrino: exchange ,lithium ,gamma ray ,efficiency ,neutrino: Majorana ,numerical calculations: Monte Carlo ,double beta decay, neutrino - Abstract
The CUPID-Mo experiment to search for 0$$\nu \beta \beta $$ ν β β decay in $$^{100}$$ 100 Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a demonstrator for CUPID, a next generation 0$$\nu \beta \beta $$ ν β β decay experiment. CUPID-Mo was comprised of 20 enriched $$\hbox {Li}_{{2}}$$ Li 2 $$^{100}$$ 100 $$\hbox {MoO}_4$$ MoO 4 scintillating calorimeters, each with a mass of $$\sim 0.2$$ ∼ 0.2 kg, operated at $$\sim 20$$ ∼ 20 mK. We present here the final analysis with the full exposure of CUPID-Mo ($$^{100}$$ 100 Mo exposure of 1.47 $$\hbox {kg} \times \hbox {year}$$ kg × year ) used to search for lepton number violation via 0$$\nu \beta \beta $$ ν β β decay. We report on various analysis improvements since the previous result on a subset of data, reprocessing all data with these new techniques. We observe zero events in the region of interest and set a new limit on the $$^{100}$$ 100 Mo 0$$\nu \beta \beta $$ ν β β decay half-life of $$T_{1/2}^{0\nu }$$ T 1 / 2 0 ν $$> {1.8}\times 10^{24}$$ > 1.8 × 10 24 year (stat. + syst.) at 90% CI. Under the light Majorana neutrino exchange mechanism this corresponds to an effective Majorana neutrino mass of $$\left$$ m β β $$ < ( 0.28 - 0.49 ) eV, dependent upon the nuclear matrix element utilized.
- Published
- 2022
- Full Text
- View/download PDF
5. Precise measurement of $2\nu\beta\beta$ decay of $^{100}$Mo with the CUPID-Mo detection technology
- Author
-
Matthias Kleifges, S. Marnieros, A. S. Barabash, J. Kotila, Ezio Previtali, E. Guerard, B. Welliver, Lindley Winslow, P. de Marcillac, Claudia Tomei, A. S. Zolotarova, L. Marini, R. G. Huang, O. G. Polischuk, D. Misiak, Th. Redon, J. Billard, L. Cardani, Stefano Pirro, Federico Ferri, Yao Shen, J. Johnston, M. Pavan, P. Camus, V. Novati, B. K. Fujikawa, M. de Combarieu, L. Pattavina, Alain Benoit, B. Siebenborn, Yu. A. Borovlev, F. Charlieux, H. Z. Huang, S. V. Rozov, B. Paul, E. Armengaud, E. P. Makarov, L. Ma, Vasundhara Singh, F.A. Danevich, M. Briere, P. Loaiza, B. Schmidt, E. Elkhoury, M. De Jesus, A. Giuliani, V. I. Umatov, D. L. Helis, S. I. Konovalov, C. Rusconi, M. Gros, C. Nones, L. Dumoulin, V.N. Shlegel, K. Eitel, H. Khalife, Marc Weber, X. F. Navick, Francesca Bellini, G. Pessina, A. Leder, D.V. Poda, V.I. Tretyak, M. Beretta, P. Pari, L. Pagnanini, Yu G. Kolomensky, Ioan Dafinei, Jonathan Ouellet, C. Augier, Giovanni Benato, K. Schäffner, V. Sanglard, A. Juillard, Matias Velázquez, V. V. Kobychev, L. Vagneron, L. Bergé, E. Yakushev, L. Gironi, E. Olivieri, J. Gascon, A. Cazes, Ch. Bourgeois, V.B. Brudanin, M. Chapellier, N. Casali, M. Xue, V. D. Grigorieva, Haiping Peng, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Institut Rayonnement Matière de Saclay (IRAMIS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Armengaud, E, Augier, C, Barabash, A, Bellini, F, Benato, G, Benoit, A, Beretta, M, Berge, L, Billard, J, Borovlev, Y, Bourgeois, C, Briere, M, Brudanin, V, Camus, P, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Charlieux, F, de Combarieu, M, Dafinei, I, Danevich, F, De Jesus, M, Dumoulin, L, Eitel, K, Elkhoury, E, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Guerard, E, Helis, D, Huang, H, Huang, R, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Leder, A, Kotila, J, Loaiza, P, Ma, L, Makarov, E, de Marcillac, P, Marini, L, Marnieros, S, Misiak, D, Navick, X, Nones, C, Novati, V, Olivieri, E, Ouellet, J, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Previtali, E, Redon, T, Rozov, S, Rusconi, C, Sanglard, V, Schaffner, K, Schmidt, B, Shen, Y, Shlegel, V, Siebenborn, B, Singh, V, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velazquez, M, Weber, M, Welliver, B, Winslow, L, Xue, M, Yakushev, E, Zolotarova, A, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Cryogénie (NEEL - Cryo)
- Subjects
Lithium molybdate ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,Analytical chemistry ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,nucl-ex ,01 natural sciences ,Atomic ,chemistry.chemical_compound ,Particle and Plasma Physics ,two-neutrino double-beta decay, scintillating bolometers ,0103 physical sciences ,ddc:530 ,Beta (velocity) ,Nuclear ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Nuclear Experiment ,Engineering (miscellaneous) ,physics.ins-det ,S076H2N ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,Molecular ,Beta decay ,Nuclear & Particles Physics ,3. Good health ,chemistry ,double beta decays, bolometers ,Underground laboratory ,Ground state - Abstract
We report the measurement of the two-neutrino double-beta ($2\nu\beta\beta$) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (\crystal) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory. From a total exposure of $42.235$ kg$\times$d, the half-life of $^{100}$Mo is determined to be $T_{1/2}^{2\nu}=[7.12^{+0.18}_{-0.14}\,\mathrm{(stat.)}\pm0.10\,\mathrm{(syst.)}]\times10^{18}$ years. This is the most accurate determination of the $2\nu\beta\beta$ half-life of $^{100}$Mo to date. We also confirm, with the statistical significance of $>3\sigma$, that the single-state dominance model of the $2\nu\beta\beta$ decay of $^{100}$Mo is favored over the high-state dominance model., Comment: 11 pages, 6 figures, 4 tables
- Published
- 2020
- Full Text
- View/download PDF
6. The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects
- Author
-
E. Armengaud, C. Augier, A. S. Barabash, F. Bellini, G. Benato, A. Benoît, M. Beretta, L. Bergé, J. Billard, Yu. A. Borovlev, Ch. Bourgeois, M. Briere, V. B. Brudanin, P. Camus, L. Cardani, N. Casali, A. Cazes, M. Chapellier, F. Charlieux, M. de Combarieu, I. Dafinei, F. A. Danevich, M. De Jesus, L. Dumoulin, K. Eitel, E. Elkhoury, F. Ferri, B. K. Fujikawa, J. Gascon, L. Gironi, A. Giuliani, V. D. Grigorieva, M. Gros, E. Guerard, D. L. Helis, H. Z. Huang, R. Huang, J. Johnston, A. Juillard, H. Khalife, M. Kleifges, V. V. Kobychev, Yu. G. Kolomensky, S. I. Konovalov, A. Leder, P. Loaiza, L. Ma, E. P. Makarov, P. de Marcillac, L. Marini, S. Marnieros, D. Misiak, X. -F. Navick, C. Nones, V. Novati, E. Olivieri, J. L. Ouellet, L. Pagnanini, P. Pari, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, S. Pirro, D. V. Poda, O. G. Polischuk, E. Previtali, Th. Redon, S. Rozov, C. Rusconi, V. Sanglard, K. Schäffner, B. Schmidt, Y. Shen, V. N. Shlegel, B. Siebenborn, V. Singh, S. Sorbino, C. Tomei, V. I. Tretyak, V. I. Umatov, L. Vagneron, M. Velázquez, M. Weber, B. Welliver, L. Winslow, M. Xue, E. Yakushev, A. S. Zolotarova, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et modélisation des milieux condensés (LPM2C), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Cryogénie (NEEL - Cryo), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Armengaud, E, Augier, C, Barabash, A, Bellini, F, Benato, G, Benoît, A, Beretta, M, Bergé, L, Billard, J, Borovlev, Y, Bourgeois, C, Briere, M, Brudanin, V, Camus, P, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Charlieux, F, de Combarieu, M, Dafinei, I, Danevich, F, De Jesus, M, Dumoulin, L, Eitel, K, Elkhoury, E, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Guerard, E, Helis, D, Huang, H, Huang, R, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Leder, A, Loaiza, P, Ma, L, Makarov, E, de Marcillac, P, Marini, L, Marnieros, S, Misiak, D, Navick, X, Nones, C, Novati, V, Olivieri, E, Ouellet, J, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Previtali, E, Redon, T, Rozov, S, Rusconi, C, Sanglard, V, Schäffner, K, Schmidt, B, Shen, Y, Shlegel, V, Siebenborn, B, Singh, V, Sorbino, S, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velázquez, M, Weber, M, Welliver, B, Winslow, L, Xue, M, Yakushev, E, and Zolotarova, A
- Subjects
double-beta decay: neutrinoless ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,energy resolution ,Radiopurity ,nucl-ex ,01 natural sciences ,7. Clean energy ,Atomic ,law.invention ,High Energy Physics - Experiment ,Particle identification ,High Energy Physics - Experiment (hep-ex) ,CUORE ,Particle and Plasma Physics ,High performance ,neutrinoless double beta decay ,Majorana neutrino ,cryogenic calorimeters ,law ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Scintillating bolometer ,Nuclear Experiment (nucl-ex) ,physics.ins-det ,Nuclear Experiment ,Low background ,Physics ,Quantum Physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,molybdenum: oxygen ,Full width at half maximum ,cryogenics ,lithium ,100 Mo ,ddc:620 ,photon: yield ,performance ,Double-beta decay ,FOS: Physical sciences ,Cryogenic detector ,lcsh:Astrophysics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,crystal ,Nuclear physics ,bolometer ,double-beta decay: (0neutrino) ,Double beta decay ,lcsh:QB460-466 ,0103 physical sciences ,germanium: detector ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Nuclear ,Sensitivity (control systems) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Engineering (miscellaneous) ,Engineering & allied operations ,scintillation counter ,detector: design ,Lithium molybdate ,Scintillation ,molybdenum: nuclide ,010308 nuclear & particles physics ,hep-ex ,Bolometer ,Molecular ,bibliography ,Enriched materials ,sensitivity ,calibration ,Scintillator ,Automatic Keywords ,lcsh:QC770-798 ,Energy (signal processing) ,acceptance - Abstract
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ($0\nu\beta\beta$) of $^{100}$Mo. In this article, we detail the CUPID-Mo detector concept, assembly, installation in the underground laboratory in Modane in 2018, and provide results from the first datasets. The demonstrator consists of an array of 20 scintillating bolometers comprised of $^{100}$Mo-enriched 0.2 kg Li$_2$MoO$_4$ crystals. The detectors are complemented by 20 thin cryogenic Ge bolometers acting as light detectors to distinguish $\alpha$ from $\gamma$/$\beta$ events by the detection of both heat and scintillation light signals. We observe good detector uniformity, facilitating the operation of a large detector array as well as excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Based on the observed energy resolutions and light yields a separation of $\alpha$ particles at much better than 99.9\% with equally high acceptance for $\gamma$/$\beta$ events is expected for events in the region of interest for $^{100}$Mo $0\nu\beta\beta$. We present limits on the crystals' radiopurity ($\leq$3 $\mu$Bq/kg of $^{226}$Ra and $\leq$2 $\mu$Bq/kg of $^{232}$Th). Based on these initial results we also discuss a sensitivity study for the science reach of the CUPID-Mo experiment, in particular, the ability to set the most stringent half-life limit on the $^{100}$Mo $0\nu\beta\beta$ decay after half a year of livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology - developed in the framework of the LUMINEU project - selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale cryogenic $0\nu\beta\beta$ experiment., Comment: 15 pages, 18 figures, 3 tables; to be submitted to EPJC
- Published
- 2020
- Full Text
- View/download PDF
7. Precise measurement of 2ν2$\beta$ decay of $^{100}$Mo with Li$_2$MoO$_4$ low temperature detectors: Preliminary results
- Author
-
S. Sorbino, C. Nones, G. Pessina, Yu. A. Borovlev, J. Kotila, L. Dumoulin, E. Queguiner, A. S. Barabash, M. Chapellier, E. Previtali, O. G. Polischuk, M. Xue, J. Gascon, X-F. Navick, P. Pari, B. Schmidt, M. Kleifges, L. Pagnanini, L. Pattavina, F. Bellini, V.V. Kobychev, N. Besson, M. Pavan, C. Tomei, S. Marnieros, H. Z. Huang, A. Cazes, S. Pirro, B. Paul, R.Huang Lbnl, Federico Ferri, R. Maisonobe, K. Schäffner, M. Gros, Ch. Bourgeois, V. I. Tretyak, M. De Jesus, K. Eitel, H. Khalife, P. de Marcillac, L. Vagneron, M. de Combarieu, E. Olivieri, E. Guerard, C. Rusconi, E. P. Makarov, A. Beno, V.N. Shlegel, D. V. Poda, Yao Shen, J. Johnston, Yu. G. Kolomensky, L. Gironi, J. Billard, A. Giuliani, S. I. Konovalov, N. Casali, I. Dafinei, E. Armengaud, V. B. Brudanin, F. Charlieux, T. Redon, C. Augier, Laura Cardani, A. Juillard, Haiping Peng, Lindley Winslow, Matias Velázquez, B.F. Fujikawa, F.A. Danevich, M. Beretta, V. I. Umatov, M. Vignati, A. Leder, E. Yakushev, M. Weber, S. V. Rozov, V. Novati, V.D. Grigorieva, Ph. Camus, A. S. Zolotarova, P. Loaiza, Luc Bergé, B. Siebenborn, V. Sanglard, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut Rayonnement Matière de Saclay (IRAMIS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Hélium : du fondamental aux applications (NEEL - HELFA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Cryogénie (NEEL - Cryo), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Armengaud, E, Augier, C, Barabash, A, Bellini, F, Beno, A, Beretta, M, Berge, L, Besson, N, Billard, J, Borovlev, Y, Bourgeois, C, Brudanin, V, Camus, P, Cardani, L, Casali, N, Cazes, A, Chapellier, M, Charlieux, F, De Combarieu, M, Danevich, F, Dafinei, I, De Jesus, M, Dumoulin, L, Eitel, K, Ferri, F, Fujikawa, B, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, V, Gros, M, Guerard, E, Huang, H, Huang, R, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, V, Kolomensky, Y, Konovalov, S, Leder, A, Kotila, J, Loaiza, P, Maisonobe, R, Makarov, E, De Marcillac, P, Marnieros, S, Navick, X, Nones, C, Novati, V, Olivieri, E, Pagnanini, L, Pari, P, Pattavina, L, Pavan, M, Paul, B, Peng, H, Pessina, G, Pirro, S, Poda, D, Polischuk, O, Previtali, E, Queguiner, E, Redon, T, Rozov, S, Rusconi, C, Sanglard, V, Schaffner, K, Shen, Y, Schmidt, B, Shlegel, V, Siebenborn, B, Sorbino, S, Tomei, C, Tretyak, V, Umatov, V, Vagneron, L, Velazquez, M, Vignati, M, Weber, M, Winslow, L, Xue, M, Yakushev, E, and Zolotarova, A
- Subjects
Lithium molybdate ,Materials science ,energy: ground state ,Analytical chemistry ,lifetime: measured ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,law.invention ,chemistry.chemical_compound ,background: low ,bolometer ,temperature: low ,law ,Double beta decay ,0103 physical sciences ,double-beta decay: (2neutrino) ,010306 general physics ,detector: temperature ,molybdenum: nuclide ,010308 nuclear & particles physics ,Bolometer ,Detector ,Beta decay ,molybdenum: semileptonic decay ,chemistry ,Underground laboratory ,scintillation counter: crystal ,double beta decay, scintillating bolometers ,Ground state ,experimental results - Abstract
International audience; The half-life of 100Mo relatively to the 2ν2β decay to the ground state of 100Ru was measured as T1/2 = (6.99±0.15) × 1018 yr with the help of enriched in 100Mo lithium molybdate scintillating bolometers in the EDELWEISS-III low background set-up at the Modane underground laboratory. This is the most accurate value of the 2ν2β half-life of 100Mo.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.