84 results on '"A. Banon-Navarro"'
Search Results
2. Electrostatic gyrokinetic simulations in Wendelstein 7-X geometry: benchmark between the codes stella and GENE
- Author
-
González-Jerez, A., Xanthopoulos, P., García-Regaña, J. M., Calvo, I., Alcusón, J., Bañón-Navarro, A., Barnes, M., Parra, F. I., and Geiger, J.
- Subjects
Physics - Plasma Physics - Abstract
The first experimental campaigns have proven that, due to the optimization of the magnetic configuration with respect to neoclassical transport, the contribution of turbulence is essential to understand and predict the total particle and energy transport in Wendelstein 7-X (W7-X). This has spurred much work on gyrokinetic modelling for the interpretation of the available experimental results and for the preparation of the next campaigns. At the same time, new stellarator gyrokinetic codes have just been or are being developed. It is therefore desirable to have a sufficiently complete, documented and verified set of gyrokinetic simulations in W7-X geometry against which new codes or upgrades of existing codes can be tested and benchmarked. This paper attemps to provide such a set of simulations in the form of a comprehensive benchmark between the recently developed code stella and the well-established code GENE. The benchmark consists of electrostatic gyrokinetic simulations in W7-X magnetic geometry and includes different flux tubes, linear ion-temperature-gradient (ITG) and trapped-electron-mode (TEM)} stability analyses, computation of linear zonal flow responses and calculation of ITG-driven heat fluxes.
- Published
- 2021
- Full Text
- View/download PDF
3. Overview of ASDEX upgrade results in view of ITER and DEMO
- Author
-
H. Zohm, E. Alessi, C. Angioni, N. Arden, V. Artigues, M. Astrain, O. Asunta, M. Balden, V. Bandaru, A. Banon Navarro, M. Bauer, A. Bergmann, M. Bergmann, J. Bernardo, M. Bernert, A. Biancalani, R. Bielajew, R. Bilato, G. Birkenmeier, T. Blanken, V. Bobkov, A. Bock, L. Bock, T. Body, T. Bolzonella, N. Bonanomi, A. Bortolon, B. Böswirth, C. Bottereau, A. Bottino, H. van den Brand, M. Brenzke, S. Brezinsek, D. Brida, F. Brochard, J. Buchanan, A. Buhler, A. Burckhart, Y. Camenen, B. Cannas, P. Cano Megías, D. Carlton, M. Carr, P. Carvalho, C. Castaldo, A. Castillo Castillo, A. Cathey, M. Cavedon, C. Cazzaniga, C. Challis, A. Chankin, A. Chomiczewska, C. Cianfarani, F. Clairet, S. Coda, R. Coelho, J.W. Coenen, L. Colas, G. Conway, S. Costea, D. Coster, T. Cote, A.J. Creely, G. Croci, D.J. Cruz Zabala, G. Cseh, I. Cziegler, O. D’Arcangelo, A. Dal Molin, P. David, C. Day, M. de Baar, P. de Marné, R. Delogu, P. Denner, A. Di Siena, M. Dibon, J.J. Dominguez-Palacios Durán, D. Dunai, M. Dreval, M. Dunne, B.P. Duval, R. Dux, T. Eich, S. Elgeti, A. Encheva, B. Esposito, E. Fable, M. Faitsch, D. Fajardo Jimenez, U. Fantz, M. Farnik, H. Faugel, F. Felici, O. Ficker, A. Figueredo, R. Fischer, O. Ford, L. Frassinetti, M. Fröschle, G. Fuchert, J.C. Fuchs, H. Fünfgelder, S. Futatani, K. Galazka, J. Galdon-Quiroga, D. Gallart Escolà, A. Gallo, Y. Gao, S. Garavaglia, M. Garcia Muñoz, B. Geiger, L. Giannone, S. Gibson, L. Gil, E. Giovannozzi, I. Girka, O. Girka, T. Gleiter, S. Glöggler, M. Gobbin, J.C. Gonzalez, J. Gonzalez Martin, T. Goodman, G. Gorini, T. Görler, D. Gradic, G. Granucci, A. Gräter, G. Grenfell, H. Greuner, M. Griener, M. Groth, O. Grover, A. Gude, L. Guimarais, S. Günter, D. Hachmeister, A.H. Hakola, C. Ham, T. Happel, N. den Harder, G. Harrer, J. Harrison, V. Hauer, T. Hayward-Schneider, B. Heinemann, P. Heinrich, T. Hellsten, S. Henderson, P. Hennequin, M. Herschel, S. Heuraux, A. Herrmann, E. Heyn, F. Hitzler, J. Hobirk, K. Höfler, S. Hörmann, J.H. Holm, M. Hölzl, C. Hopf, L. Horvath, T. Höschen, A. Houben, A. Hubbard, A. Huber, K. Hunger, V. Igochine, M. Iliasova, J. Illerhaus, K. Insulander Björk, C. Ionita-Schrittwieser, I. Ivanova-Stanik, S. Jachmich, W. Jacob, N. Jaksic, A. Jansen van Vuuren, F. Jaulmes, F. Jenko, T. Jensen, E. Joffrin, A. Kallenbach, J. Kalis, A. Kappatou, J. Karhunen, C.-P. Käsemann, S. Kasilov, Y. Kazakov, A. Kendl, W. Kernbichler, E. Khilkevitch, M. Kircher, A. Kirk, S. Kjer Hansen, V. Klevarova, F. Klossek, G. Kocsis, M. Koleva, M. Komm, M. Kong, A. Krämer-Flecken, M. Krause, I. Krebs, A. Kreuzeder, K. Krieger, O. Kudlacek, D. Kulla, T. Kurki-Suonio, B. Kurzan, B. Labit, K. Lackner, F. Laggner, A. Lahtinen, P. Lainer, P.T. Lang, P. Lauber, M. Lehnen, L. Leppin, E. Lerche, N. Leuthold, L. Li, J. Likonen, O. Linder, H. Lindl, B. Lipschultz, Y. Liu, Z. Lu, T. Luda Di Cortemiglia, N.C. Luhmann, T. Lunt, A. Lyssoivan, T. Maceina, J. Madsen, A. Magnanimo, H. Maier, J. Mailloux, R. Maingi, O. Maj, E. Maljaars, V. Maquet, A. Mancini, A. Manhard, P. Mantica, M. Mantsinen, P. Manz, M. Maraschek, C. Marchetto, M. Markl, L. Marrelli, P. Martin, F. Matos, M. Mayer, P.J. McCarthy, R. McDermott, G. Meng, R. Merkel, A. Merle, H. Meyer, M. Michelini, D. Milanesio, V. Mitterauer, P. Molina Cabrera, M. Muraca, F. Nabais, V. Naulin, R. Nazikian, R.D. Nem, R. Neu, A.H. Nielsen, S.K. Nielsen, T. Nishizawa, M. Nocente, I. Novikau, S. Nowak, R. Ochoukov, J. Olsen, P. Oyola, O. Pan, G. Papp, A. Pau, G. Pautasso, C. Paz-Soldan, M. Peglau, E. Peluso, P. Petersson, C. Piron, U. Plank, B. Plaum, B. Plöckl, V. Plyusnin, G. Pokol, E. Poli, A. Popa, L. Porte, J. Puchmayr, T. Pütterich, L. Radovanovic, M. Ramisch, J. Rasmussen, G. Ratta, S. Ratynskaia, G. Raupp, A. Redl, D. Réfy, M. Reich, F. Reimold, D. Reiser, M. Reisner, D. Reiter, B. Rettino, T. Ribeiro, D. Ricci, R. Riedl, J. Riesch, J.F. Rivero Rodriguez, G. Rocchi, P. Rodriguez-Fernandez, V. Rohde, G. Ronchi, M. Rott, M. Rubel, D.A. Ryan, F. Ryter, S. Saarelma, M. Salewski, A. Salmi, O. Samoylov, L. Sanchis Sanchez, J. Santos, O. Sauter, G. Schall, A. Schlüter, J. Scholte, K. Schmid, O. Schmitz, P.A. Schneider, R. Schrittwieser, M. Schubert, C. Schuster, N. Schwarz, T. Schwarz-Selinger, J. Schweinzer, F. Sciortino, O. Seibold-Benjak, A. Shabbir, A. Shalpegin, S. Sharapov, U. Sheikh, A. Shevelev, G. Sias, M. Siccinio, B. Sieglin, A. Sigalov, A. Silva, C. Silva, D. Silvagni, J. Simpson, S. Sipilä, A. Snicker, E. Solano, C. Sommariva, C. Sozzi, M. Spacek, G. Spizzo, M. Spolaore, A. Stegmeir, M. Stejner, D. Stieglitz, J. Stober, U. Stroth, E. Strumberger, G. Suarez Lopez, W. Suttrop, T. Szepesi, B. Tál, T. Tala, W. Tang, G. Tardini, M. Tardocchi, D. Terranova, M. Teschke, E. Thorén, W. Tierens, D. Told, W. Treutterer, G. Trevisan, M. Tripský, P. Ulbl, G. Urbanczyk, M. Usoltseva, M. Valisa, M. Valovic, S. van Mulders, M. van Zeeland, F. Vannini, B. Vanovac, P. Varela, S. Varoutis, T. Verdier, G. Verdoolaege, N. Vianello, J. Vicente, T. Vierle, E. Viezzer, I. Voitsekhovitch, U. von Toussaint, D. Wagner, X. Wang, M. Weiland, D. Wendler, A.E. White, M. Willensdorfer, B. Wiringer, M. Wischmeier, R. Wolf, E. Wolfrum, Q. Yang, C. Yoo, Q. Yu, R. Zagórski, I. Zammuto, T. Zehetbauer, W. Zhang, W. Zholobenko, A. Zibrov, M. Zilker, C.F.B. Zimmermann, A. Zito, S. Zoletnik, the EUROfusion Tokamak Exploitation Team, and the ASDEX Upgrade Team
- Subjects
tokamak ,MHD stability ,transport modelling ,radiative exhaust ,disruption physics ,ELM free scenarios ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98( p,y ) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q -profile) were established on AUG and characterised concerning their plasma performance.
- Published
- 2024
- Full Text
- View/download PDF
4. Overview of T and D–T results in JET with ITER-like wall
- Author
-
C.F. Maggi, D. Abate, N. Abid, P. Abreu, O. Adabonyan, M. Afzal, I. Ahmad, M. Akhtar, R. Albanese, S. Aleiferis, E. Alessi, P. Aleynikov, J. Alguacil, J. Alhage, M. Ali, H. Allen, M. Allinson, M. Alonzo, E. Alves, R. Ambrosino, E. Andersson Sundén, P. Andrew, M. Angelone, C. Angioni, I. Antoniou, L. Appel, C. Appelbee, C. Aramunde, M. Ariola, G. Arnoux, G. Artaserse, J.-F. Artaud, W. Arter, V. Artigues, F.J. Artola, A. Ash, O. Asztalos, D. Auld, F. Auriemma, Y. Austin, L. Avotina, J. Ayllón, E. Aymerich, A. Baciero, L. Bähner, F. Bairaktaris, I. Balboa, M. Balden, N. Balshaw, V.K. Bandaru, J. Banks, A. Banon Navarro, C. Barcellona, O. Bardsley, M. Barnes, R. Barnsley, M. Baruzzo, M. Bassan, A. Batista, P. Batistoni, L. Baumane, B. Bauvir, L. Baylor, C. Bearcroft, P. Beaumont, D. Beckett, A. Begolli, M. Beidler, N. Bekris, M. Beldishevski, E. Belli, F. Belli, S. Benkadda, J. Bentley, E. Bernard, J. Bernardo, M. Bernert, M. Berry, L. Bertalot, H. Betar, M. Beurskens, P.G. Bhat, S. Bickerton, J. Bielecki, T. Biewer, R. Bilato, P. Bílková, G. Birkenmeier, R. Bisson, J.P.S. Bizarro, P. Blatchford, A. Bleasdale, V. Bobkov, A. Boboc, A. Bock, G. Bodnar, P. Bohm, L. Bonalumi, N. Bonanomi, D. Bonfiglio, X. Bonnin, P. Bonofiglo, J. Booth, D. Borba, D. Borodin, I. Borodkina, T.O.S.J. Bosman, C. Bourdelle, M. Bowden, I. Božičević Mihalić, S.C. Bradnam, B. Breizman, S. Brezinsek, D. Brida, M. Brix, P. Brown, D. Brunetti, M. Buckley, J. Buermans, H. Bufferand, P. Buratti, A. Burckhart, A. Burgess, A. Buscarino, A. Busse, D. Butcher, G. Calabrò, L. Calacci, R. Calado, R. Canavan, B. Cannas, M. Cannon, M. Cappelli, S. Carcangiu, P. Card, A. Cardinali, S. Carli, P. Carman, D. Carnevale, B. Carvalho, I.S. Carvalho, P. Carvalho, I. Casiraghi, F.J. Casson, C. Castaldo, J.P. Catalan, N. Catarino, F. Causa, M. Cavedon, M. Cecconello, L. Ceelen, C.D. Challis, B. Chamberlain, R. Chandra, C.S. Chang, A. Chankin, B. Chapman, P. Chauhan, M. Chernyshova, A. Chiariello, G.-C. Chira, P. Chmielewski, A. Chomiczewska, L. Chone, J. Cieslik, G. Ciraolo, D. Ciric, J. Citrin, Ł. Ciupinski, R. Clarkson, M. Cleverly, P. Coates, V. Coccorese, R. Coelho, J.W. Coenen, I.H. Coffey, A. Colangeli, L. Colas, J. Collins, S. Conroy, C. Contré, N.J. Conway, D. Coombs, P. Cooper, S. Cooper, L. Cordaro, C. Corradino, Y. Corre, G. Corrigan, D. Coster, T. Craciunescu, S. Cramp, D. Craven, R. Craven, G. Croci, D. Croft, K. Crombé, T. Cronin, N. Cruz, A. Cufar, A. Cullen, A. Dal Molin, S. Dalley, P. David, A. Davies, J. Davies, S. Davies, G. Davis, K. Dawson, S. Dawson, I. Day, G. De Tommasi, J. Deane, M. Dearing, M. De Bock, J. Decker, R. Dejarnac, E. Delabie, E. de la Cal, E. de la Luna, D. Del Sarto, A. Dempsey, W. Deng, A. Dennett, G.L. Derks, G. De Temmerman, F. Devasagayam, P. de Vries, P. Devynck, A. di Siena, D. Dickinson, T. Dickson, M. Diez, P. Dinca, T. Dittmar, L. Dittrich, J. Dobrashian, T. Dochnal, A.J.H. Donné, W. Dorland, S. Dorling, S. Dormido-Canto, R. Dotse, D. Douai, S. Dowson, R. Doyle, M. Dreval, P. Drews, G. Drummond, Ph. Duckworth, H.G. Dudding, R. Dumont, P. Dumortier, D. Dunai, T. Dunatov, M. Dunne, I. Ďuran, F. Durodié, R. Dux, T. Eade, E. Eardley, J. Edwards, T. Eich, A. Eksaeva, H. El-Haroun, R.D. Ellis, G. Ellwood, C. Elsmore, S. Emery, G. Ericsson, B. Eriksson, F. Eriksson, J. Eriksson, L.G. Eriksson, S. Ertmer, G. Evans, S. Evans, E. Fable, D. Fagan, M. Faitsch, D. Fajardo Jimenez, M. Falessi, A. Fanni, T. Farmer, I. Farquhar, B. Faugeras, S. Fazinić, N. Fedorczak, K. Felker, R. Felton, H. Fernandes, D.R. Ferreira, J. Ferreira, G. Ferrò, J. Fessey, O. Février, O. Ficker, A.R. Field, A. Figueiredo, J. Figueiredo, A. Fil, N. Fil, P. Finburg, U. Fischer, G. Fishpool, L. Fittill, M. Fitzgerald, D. Flammini, J. Flanagan, S. Foley, N. Fonnesu, M. Fontana, J.M. Fontdecaba, L. Fortuna, E. Fortuna-Zalesna, M. Fortune, C. Fowler, P. Fox, O. Franklin, E. Fransson, L. Frassinetti, R. Fresa, D. Frigione, T. Fülöp, M. Furseman, S. Gabriellini, D. Gadariya, S. Gadgil, K. Gál, S. Galeani, A. Galkowski, D. Gallart, M. Gambrioli, T. Gans, J. Garcia, M. García-Muñoz, L. Garzotti, J. Gaspar, R. Gatto, P. Gaudio, D. Gear, T. Gebhart, S. Gee, M. Gelfusa, R. George, S.N. Gerasimov, R. Gerru, G. Gervasini, M. Gethins, Z. Ghani, M. Gherendi, P.-I. Gherghina, F. Ghezzi, L. Giacomelli, C. Gibson, L. Gil, M.R. Gilbert, A. Gillgren, E. Giovannozzi, C. Giroud, G. Giruzzi, J. Goff, V. Goloborodko, R. Gomes, J.-F. Gomez, B. Gonçalves, M. Goniche, J. Gonzalez-Martin, A. Goodyear, S. Gore, G. Gorini, T. Görler, N. Gotts, E. Gow, J.P. Graves, J. Green, H. Greuner, E. Grigore, F. Griph, W. Gromelski, M. Groth, C. Grove, R. Grove, N. Gupta, S. Hacquin, L. Hägg, A. Hakola, M. Halitovs, J. Hall, C.J. Ham, M. Hamed, M.R. Hardman, Y. Haresawa, G. Harrer, J.R. Harrison, D. Harting, D.R. Hatch, T. Haupt, J. Hawes, N.C. Hawkes, J. Hawkins, S. Hazael, J. Hearmon, P. Heesterman, P. Heinrich, M. Held, W. Helou, O. Hemming, S.S. Henderson, R. Henriques, R.B. Henriques, D. Hepple, J. Herfindal, G. Hermon, J.C. Hillesheim, K. Hizanidis, A. Hjalmarsson, A. Ho, J. Hobirk, O. Hoenen, C. Hogben, A. Hollingsworth, S. Hollis, E. Hollmann, M. Hölzl, M. Hook, M. Hoppe, J. Horáček, N. Horsten, A. Horton, L.D. Horton, L. Horvath, S. Hotchin, Z. Hu, Z. Huang, E. Hubenov, A. Huber, V. Huber, T. Huddleston, G.T.A. Huijsmans, Y. Husain, P. Huynh, A. Hynes, D. Iglesias, M.V. Iliasova, M. Imríšek, J. Ingleby, P. Innocente, V. Ioannou-Sougleridis, N. Isernia, I. Ivanova-Stanik, E. Ivings, S. Jachmich, T. Jackson, A.S. Jacobsen, P. Jacquet, H. Järleblad, A. Järvinen, F. Jaulmes, N. Jayasekera, F. Jenko, I. Jepu, E. Joffrin, T. Johnson, J. Johnston, C. Jones, E. Jones, G. Jones, L. Jones, T.T.C. Jones, A. Joyce, M. Juvonen, A. Kallenbach, P. Kalnina, D. Kalupin, P. Kanth, A. Kantor, A. Kappatou, O. Kardaun, J. Karhunen, E. Karsakos, Ye.O. Kazakov, V. Kazantzidis, D.L. Keeling, W. Kelly, M. Kempenaars, D. Kennedy, K. Khan, E. Khilkevich, C. Kiefer, H.-T. Kim, J. Kim, S.H. Kim, D.B. King, D.J. Kinna, V.G. Kiptily, A. Kirjasuo, K.K. Kirov, A. Kirschner, T. Kiviniemi, G. Kizane, C. Klepper, A. Klix, G. Kneale, M. Knight, P. Knight, R. Knights, S. Knipe, U. Knoche, M. Knolker, M. Kocan, F. Köchl, G. Kocsis, J.T.W. Koenders, Y. Kolesnichenko, Y. Kominis, M. Kong, B. Kool, V. Korovin, S.B. Korsholm, B. Kos, D. Kos, M. Koubiti, Y. Kovtun, E. Kowalska-Strzęciwilk, K. Koziol, Y. Krasikov, A. Krasilnikov, V. Krasilnikov, M. Kresina, A. Kreter, K. Krieger, A. Krivska, U. Kruezi, I. Książek, H. Kumpulainen, B. Kurzan, S. Kwak, O.J. Kwon, B. Labit, M. Lacquaniti, A. Lagoyannis, L. Laguardia, A. Laing, V. Laksharam, N. Lam, H.T. Lambertz, B. Lane, M. Langley, E. Lascas Neto, E. Łaszyńska, K.D. Lawson, A. Lazaros, E. Lazzaro, G. Learoyd, C. Lee, K. Lee, S. Leerink, T. Leeson, X. Lefebvre, H.J. Leggate, J. Lehmann, M. Lehnen, D. Leichtle, F. Leipold, I. Lengar, M. Lennholm, E. Leon Gutierrez, L.A. Leppin, E. Lerche, A. Lescinskis, S. Lesnoj, L. Lewin, J. Lewis, J. Likonen, Ch. Linsmeier, X. Litaudon, E. Litherland-Smith, F. Liu, T. Loarer, A. Loarte, R. Lobel, B. Lomanowski, P.J. Lomas, J. Lombardo, R. Lorenzini, S. Loreti, V.P. Loschiavo, M. Loughlin, T. Lowe, C. Lowry, T. Luce, R. Lucock, T. Luda Di Cortemiglia, M. Lungaroni, C.P. Lungu, T. Lunt, V. Lutsenko, B. Lyons, J. Macdonald, E. Macusova, R. Mäenpää, H. Maier, J. Mailloux, S. Makarov, P. Manas, A. Manning, P. Mantica, M.J. Mantsinen, J. Manyer, A. Manzanares, Ph. Maquet, M. Maraschek, G. Marceca, G. Marcer, C. Marchetto, O. Marchuk, A. Mariani, G. Mariano, M. Marin, A. Marin Roldan, M. Marinelli, T. Markovič, L. Marot, C. Marren, S. Marsden, S. Marsen, J. Marsh, R. Marshall, L. Martellucci, A.J. Martin, C. Martin, R. Martone, S. Maruyama, M. Maslov, M. Mattei, G.F. Matthews, D. Matveev, E. Matveeva, A. Mauriya, F. Maviglia, M. Mayer, M.-L. Mayoral, S. Mazzi, C. Mazzotta, R. McAdams, P.J. McCarthy, P. McCullen, R. McDermott, D.C. McDonald, D. McGuckin, V. McKay, L. McNamee, A. McShee, D. Mederick, M. Medland, S. Medley, K. Meghani, A.G. Meigs, S. Meitner, S. Menmuir, K. Mergia, S. Mianowski, P. Middleton, J. Mietelski, K. Mikszuta-Michalik, D. Milanesio, E. Milani, E. Militello-Asp, F. Militello, J. Milnes, A. Milocco, S. Minucci, I. Miron, J. Mitchell, J. Mlynář, V. Moiseenko, P. Monaghan, I. Monakhov, A. Montisci, S. Moon, R. Mooney, S. Moradi, R.B. Morales, L. Morgan, F. Moro, J. Morris, T. Mrowetz, L. Msero, S. Munot, A. Muñoz-Perez, M. Muraglia, A. Murari, A. Muraro, B. N’Konga, Y.S. Na, F. Nabais, R. Naish, F. Napoli, E. Nardon, V. Naulin, M.F.F. Nave, R. Neu, S. Ng, M. Nicassio, D. Nicolai, A.H. Nielsen, S.K. Nielsen, D. Nina, C. Noble, C.R. Nobs, M. Nocente, H. Nordman, S. Nowak, H. Nyström, J. O’Callaghan, M. O’Mullane, C. O’Neill, C. Olde, H.J.C. Oliver, R. Olney, J. Ongena, G.P. Orsitto, A. Osipov, R. Otin, N. Pace, L.W. Packer, E. Pajuste, D. Palade, J. Palgrave, O. Pan, N. Panadero, T. Pandya, E. Panontin, A. Papadopoulos, G. Papadopoulos, G. Papp, V.V. Parail, A. Parsloe, K. Paschalidis, M. Passeri, A. Patel, A. Pau, G. Pautasso, R. Pavlichenko, A. Pavone, E. Pawelec, C. Paz-Soldan, A. Peacock, M. Pearce, I.J. Pearson, E. Peluso, C. Penot, K. Pepperell, A. Perdas, T. Pereira, E. Perelli Cippo, C. Perez von Thun, D. Perry, P. Petersson, G. Petravich, N. Petrella, M. Peyman, L. Pigatto, M. Pillon, S. Pinches, G. Pintsuk, C. Piron, A. Pironti, F. Pisano, R. Pitts, U. Planck, N. Platt, V. Plyusnin, M. Podesta, G. Pokol, F.M. Poli, O.G. Pompilian, M. Poradzinski, M. Porkolab, C. Porosnicu, G. Poulipoulis, A.S. Poulsen, I. Predebon, A. Previti, D. Primetzhofer, G. Provatas, G. Pucella, P. Puglia, K. Purahoo, O. Putignano, T. Pütterich, A. Quercia, G. Radulescu, V. Radulovic, R. Ragona, M. Rainford, P. Raj, M. Rasinski, D. Rasmussen, J. Rasmussen, J.J. Rasmussen, A. Raso, G. Rattá, S. Ratynskaia, R. Rayaprolu, M. Rebai, A. Redl, D. Rees, D. Réfy, R. Reichle, H. Reimerdes, B.C.G. Reman, C. Reux, S. Reynolds, D. Rigamonti, E. Righi, F.G. Rimini, J. Risner, J.F. Rivero-Rodriguez, C.M. Roach, J. Roberts, R. Robins, S. Robinson, D. Robson, S. Rode, P. Rodrigues, P. Rodriguez-Fernandez, S. Romanelli, J. Romazanov, E. Rose, C. Rose-Innes, R. Rossi, S. Rowe, D. Rowlands, C. Rowley, M. Rubel, G. Rubinacci, G. Rubino, M. Rud, J. Ruiz Ruiz, F. Ryter, S. Saarelma, A. Sahlberg, M. Salewski, A. Salmi, R. Salmon, F. Salzedas, F. Sanchez, I. Sanders, D. Sandiford, F. Sanni, O. Sauter, P. Sauvan, G. Schettini, A. Shevelev, A.A. Schekochihin, K. Schmid, B.S. Schmidt, S. Schmuck, M. Schneider, P.A. Schneider, N. Schoonheere, R. Schramm, D. Scoon, S. Scully, M. Segato, J. Seidl, L. Senni, J. Seo, G. Sergienko, M. Sertoli, S.E. Sharapov, R. Sharma, A. Shaw, R. Shaw, H. Sheikh, U. Sheikh, N. Shi, P. Shigin, D. Shiraki, G. Sias, M. Siccinio, B. Sieglin, S.A. Silburn, A. Silva, C. Silva, J. Silva, D. Silvagni, D. Simfukwe, J. Simpson, P. Sirén, A. Sirinelli, H. Sjöstrand, N. Skinner, J. Slater, T. Smart, R.D. Smirnov, N. Smith, P. Smith, T. Smith, J. Snell, L. Snoj, E.R. Solano, V. Solokha, C. Sommariva, K. Soni, M. Sos, J. Sousa, C. Sozzi, T. Spelzini, F. Spineanu, L. Spolladore, D. Spong, C. Srinivasan, G. Staebler, A. Stagni, I. Stamatelatos, M.F. Stamp, Ž. Štancar, P.A. Staniec, G. Stankūnas, M. Stead, B. Stein-Lubrano, A. Stephen, J. Stephens, P. Stevenson, C. Steventon, M. Stojanov, D.A. St-Onge, P. Strand, S. Strikwerda, C.I. Stuart, S. Sturgeon, H.J. Sun, S. Surendran, W. Suttrop, J. Svensson, J. Svoboda, R. Sweeney, G. Szepesi, M. Szoke, T. Tadić, B. Tal, T. Tala, P. Tamain, K. Tanaka, W. Tang, G. Tardini, M. Tardocchi, D. Taylor, A.S. Teimane, G. Telesca, A. Teplukhina, A. Terra, D. Terranova, N. Terranova, D. Testa, B. Thomas, V.K. Thompson, A. Thorman, A.S. Thrysoe, W. Tierens, R.A. Tinguely, A. Tipton, H. Todd, M. Tomeš, A. Tookey, P. Tsavalas, D. Tskhakaya, L.-P. Turică, A. Turner, I. Turner, M. Turner, M.M. Turner, G. Tvalashvili, A. Tykhyy, S. Tyrrell, A. Uccello, V. Udintsev, A. Vadgama, D.F. Valcarcel, A. Valentini, M. Valisa, M. Vallar, M. Valovic, M. Van Berkel, K.L. van de Plassche, M. van Rossem, D. Van Eester, J. Varela, J. Varje, T. Vasilopoulou, G. Vayakis, M. Vecsei, J. Vega, M. Veis, P. Veis, S. Ventre, M. Veranda, G. Verdoolaege, C. Verona, G. Verona Rinati, E. Veshchev, N. Vianello, E. Viezzer, L. Vignitchouk, R. Vila, R. Villari, F. Villone, P. Vincenzi, A. Vitins, Z. Vizvary, M. Vlad, I. Voldiner, U. Von Toussaint, P. Vondráček, B. Wakeling, M. Walker, R. Walker, M. Walsh, R. Walton, E. Wang, F. Warren, R. Warren, J. Waterhouse, C. Watts, T. Webster, M. Weiland, H. Weisen, M. Weiszflog, N. Wendler, A. West, M. Wheatley, S. Whetham, A. Whitehead, D. Whittaker, A. Widdowson, S. Wiesen, M. Willensdorfer, J. Williams, I. Wilson, T. Wilson, M. Wischmeier, A. Withycombe, D. Witts, A. Wojcik-Gargula, E. Wolfrum, R. Wood, R. Woodley, R. Worrall, I. Wyss, T. Xu, D. Yadykin, Y. Yakovenko, Y. Yang, V. Yanovskiy, R. Yi, I. Young, R. Young, B. Zaar, R.J. Zabolockis, L. Zakharov, P. Zanca, A. Zarins, D. Zarzoso Fernandez, K.-D. Zastrow, Y. Zayachuk, M. Zerbini, W. Zhang, B. Zimmermann, M. Zlobinski, A. Zocco, V.K. Zotta, M. Zuin, W. Zwingmann, and I. Zychor
- Subjects
magnetic fusion ,JET-ILW ,D–T ,tritium ,alpha particles ,fusion prediction ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
In 2021 JET exploited its unique capabilities to operate with T and D–T fuel with an ITER-like Be/W wall (JET-ILW). This second major JET D–T campaign (DTE2), after DTE1 in 1997, represented the culmination of a series of JET enhancements—new fusion diagnostics, new T injection capabilities, refurbishment of the T plant, increased auxiliary heating, in-vessel calibration of 14 MeV neutron yield monitors—as well as significant advances in plasma theory and modelling in the fusion community. DTE2 was complemented by a sequence of isotope physics campaigns encompassing operation in pure tritium at high T-NBI power. Carefully conducted for safe operation with tritium, the new T and D–T experiments used 1 kg of T (vs 100 g in DTE1), yielding the most fusion reactor relevant D–T plasmas to date and expanding our understanding of isotopes and D–T mixture physics. Furthermore, since the JET T and DTE2 campaigns occurred almost 25 years after the last major D–T tokamak experiment, it was also a strategic goal of the European fusion programme to refresh operational experience of a nuclear tokamak to prepare staff for ITER operation. The key physics results of the JET T and DTE2 experiments, carried out within the EUROfusion JET1 work package, are reported in this paper. Progress in the technological exploitation of JET D–T operations, development and validation of nuclear codes, neutronic tools and techniques for ITER operations carried out by EUROfusion (started within the Horizon 2020 Framework Programme and continuing under the Horizon Europe FP) are reported in (Litaudon et al Nucl. Fusion accepted), while JET experience on T and D–T operations is presented in (King et al Nucl. Fusion submitted).
- Published
- 2024
- Full Text
- View/download PDF
5. GENE-3D: A global gyrokinetic turbulence code for stellarators
- Author
-
Maurer, M., Bañón Navarro, A., Dannert, T., Restelli, M., Hindenlang, F., Görler, T., Told, D., Jarema, D., Merlo, G., and Jenko, F.
- Published
- 2020
- Full Text
- View/download PDF
6. Full-flux-surface effects on electrostatic turbulence in Wendelstein 7-X-like plasmas
- Author
-
Wilms, Felix, primary, Banon Navarro, Alejandro, additional, and Jenko, Frank, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Modelling and theoretical understanding of the isotope effect from JET experiments in view of reliable predictions for deuterium-tritium plasmas
- Author
-
Garcia, J, Casson, F, Banon Navarro, A, Bonanomi, N, Citrin, J, King, D, Mantica, P, Mariani, A, Marin, M, Mazzi, S, Viezzer, E, Garcia J., Casson F. J., Banon Navarro A., Bonanomi N., Citrin J., King D., Mantica P., Mariani A., Marin M., Mazzi S., Viezzer E., Garcia, J, Casson, F, Banon Navarro, A, Bonanomi, N, Citrin, J, King, D, Mantica, P, Mariani, A, Marin, M, Mazzi, S, Viezzer, E, Garcia J., Casson F. J., Banon Navarro A., Bonanomi N., Citrin J., King D., Mantica P., Mariani A., Marin M., Mazzi S., and Viezzer E.
- Abstract
This is an overview of the theoretical understanding of the so-called isotope effect in JET hydrogen versus deuterium plasmas. Experimentally, weak to moderate deviations from naive GyroBohm scaling expectations are found for the core heat transport in L and H-modes. The physical mechanisms behind such deviations are analysed in the framework of the gyrokinetic theory. In the case of particle transport, isotope effects are mostly found in the plasma edge where the density is higher in deuterium than in hydrogen plasmas. In general, both the thermal energy and particle confinement increase with increasing main ion mass. A comparison of such results to expectations for deuterium-tritium plasmas in ITER is discussed.
- Published
- 2022
8. Full-flux-surface effects on electrostatic turbulence in Wendelstein 7-X-like plasmas
- Author
-
Wilms, F., https://orcid.org/0000-0001-9859-7420, Banon Navarro, A., https://orcid.org/0000-0003-0487-6395, Jenko, F., and https://orcid.org/0000-0001-6686-1469
- Published
- 2023
9. Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
- Author
-
U. Stroth, D. Aguiam, E. Alessi, C. Angioni, N. Arden, R. Arredondo Parra, V. Artigues, O. Asunta, M. Balden, V. Bandaru, A. Banon-Navarro, K. Behler, A. Bergmann, M. Bergmann, J. Bernardo, M. Bernert, A. Biancalani, R. Bielajew, R. Bilato, G. Birkenmeier, T. Blanken, V. Bobkov, A. Bock, T. Body, T. Bolzonella, N. Bonanomi, A. Bortolon, B. Böswirth, C. Bottereau, A. Bottino, H. van den Brand, M. Brenzke, S. Brezinsek, D. Brida, F. Brochard, C. Bruhn, J. Buchanan, A. Buhler, A. Burckhart, Y. Camenen, B. Cannas, P. Cano Megias, D. Carlton, M. Carr, P. Carvalho, C. Castaldo, M. Cavedon, C. Cazzaniga, C. Challis, A. Chankin, C. Cianfarani, F. Clairet, S. Coda, R. Coelho, J.W. Coenen, L. Colas, G. Conway, S. Costea, D. Coster, T. Cote, A.J. Creely, G. Croci, D.J. Cruz Zabala, G. Cseh, A. Czarnecka, I. Cziegler, O. D’Arcangelo, A. Dal Molin, P. David, C. Day, M. de Baar, P. de Marné, R. Delogu, S. Denk, P. Denner, A. Di Siena, J.J. Dominguez Palacios Durán, D. Dunai, A. Drenik, M. Dreval, R. Drube, M. Dunne, B.P. Duval, R. Dux, T. Eich, S. Elgeti, A. Encheva, K. Engelhardt, B. Erdös, I. Erofeev, B. Esposito, E. Fable, M. Faitsch, U. Fantz, M. Farnik, H. Faugel, F. Felici, O. Ficker, S. Fietz, A. Figueredo, R. Fischer, O. Ford, L. Frassinetti, M. Fröschle, G. Fuchert, J.C. Fuchs, H. Fünfgelder, S. Futatani, K. Galazka, J. Galdon-Quiroga, D. Gallart Escolà, A. Gallo, Y. Gao, S. Garavaglia, M. Garcia Muñoz, B. Geiger, L. Giannone, S. Gibson, L. Gil, E. Giovannozzi, S. Glöggler, M. Gobbin, J. Gonzalez Martin, T. Goodman, G. Gorini, T. Görler, D. Gradic, G. Granucci, A. Gräter, H. Greuner, M. Griener, M. Groth, A. Gude, L. Guimarais, S. Günter, G. Haas, A.H. Hakola, C. Ham, T. Happel, N. den Harder, G. Harrer, J. Harrison, V. Hauer, T. Hayward-Schneider, B. Heinemann, T. Hellsten, S. Henderson, P. Hennequin, A. Herrmann, E. Heyn, F. Hitzler, J. Hobirk, K. Höfler, J.H. Holm, M. Hölzl, C. Hopf, L. Horvath, T. Höschen, A. Houben, A. Hubbard, A. Huber, K. Hunger, V. Igochine, M. Iliasova, T. Ilkei, K. Insulander Björk, C. Ionita-Schrittwieser, I. Ivanova-Stanik, W. Jacob, N. Jaksic, F. Janky, A. Jansen van Vuuren, A. Jardin, F. Jaulmes, F. Jenko, T. Jensen, E. Joffrin, A. Kallenbach, S. Kálvin, M. Kantor, A. Kappatou, O. Kardaun, J. Karhunen, C.-P. Käsemann, S. Kasilov, A. Kendl, W. Kernbichler, E. Khilkevitch, A. Kirk, S. Kjer Hansen, V. Klevarova, G. Kocsis, M. Koleva, M. Komm, M. Kong, A. Krämer-Flecken, K. Krieger, A. Krivska, O. Kudlacek, T. Kurki-Suonio, B. Kurzan, B. Labit, K. Lackner, F. Laggner, A. Lahtinen, P.T. Lang, P. Lauber, N. Leuthold, L. Li, J. Likonen, O. Linder, B. Lipschultz, Y. Liu, A. Lohs, Z. Lu, T. Luda di Cortemiglia, N.C. Luhmann, T. Lunt, A. Lyssoivan, T. Maceina, J. Madsen, A. Magnanimo, H. Maier, J. Mailloux, R. Maingi, O. Maj, E. Maljaars, P. Manas, A. Mancini, A. Manhard, P. Mantica, M. Mantsinen, P. Manz, M. Maraschek, C. Marchetto, L. Marrelli, P. Martin, A. Martitsch, F. Matos, M. Mayer, M.-L. Mayoral, D. Mazon, P.J. McCarthy, R. McDermott, R. Merkel, A. Merle, D. Meshcheriakov, H. Meyer, D. Milanesio, P. Molina Cabrera, F. Monaco, M. Muraca, F. Nabais, V. Naulin, R. Nazikian, R.D. Nem, A. Nemes-Czopf, G. Neu, R. Neu, A.H. Nielsen, S.K. Nielsen, T. Nishizawa, M. Nocente, J.-M. Noterdaeme, I. Novikau, S. Nowak, M. Oberkofler, R. Ochoukov, J. Olsen, F. Orain, F. Palermo, O. Pan, G. Papp, I. Paradela Perez, A. Pau, G. Pautasso, C. Paz-Soldan, P. Petersson, P. Piovesan, C. Piron, U. Plank, B. Plaum, B. Plöck, V. Plyusnin, G. Pokol, E. Poli, L. Porte, T. Pütterich, M. Ramisch, J. Rasmussen, G. Ratta, S. Ratynskaia, G. Raupp, D. Réfy, M. Reich, F. Reimold, D. Reiser, M. Reisner, D. Reiter, T. Ribeiro, R. Riedl, J. Riesch, D. Rittich, J.F. Rivero Rodriguez, G. Rocchi, P. Rodriguez-Fernandez, M. Rodriguez-Ramos, V. Rohde, G. Ronchi, A. Ross, M. Rott, M. Rubel, D.A. Ryan, F. Ryter, S. Saarelma, M. Salewski, A. Salmi, O. Samoylov, L. Sanchis Sanchez, J. Santos, O. Sauter, G. Schall, K. Schlüter, K. Schmid, O. Schmitz, P.A. Schneider, R. Schrittwieser, M. Schubert, C. Schuster, T. Schwarz-Selinger, J. Schweinzer, E. Seliunin, A. Shabbir, A. Shalpegin, S. Sharapov, U. Sheikh, A. Shevelev, G. Sias, M. Siccinio, B. Sieglin, A. Sigalov, A. Silva, C. Silva, D. Silvagni, J. Simpson, S. Sipilä, E. Smigelskis, A. Snicker, E. Solano, C. Sommariva, C. Sozzi, G. Spizzo, M. Spolaore, A. Stegmeir, M. Stejner, J. Stober, E. Strumberge, G. Suarez Lopez, H.-J. Sun, W. Suttrop, E. Sytova, T. Szepesi, B. Tál, T. Tala, G. Tardini, M. Tardocchi, D. Terranova, M. Teschke, E. Thorén, W. Tierens, D. Told, W. Treutterer, G. Trevisan, E. Trier, M. Tripský, M. Usoltceva, M. Valisa, M. Valovic, M. van Zeeland, F. Vannini, B. Vanovac, P. Varela, S. Varoutis, N. Vianello, J. Vicente, G. Verdoolaege, T. Vierle, E. Viezzer, I. Voitsekhovitch, U. von Toussaint, D. Wagner, X. Wang, M. Weiland, A.E. White, M. Willensdorfer, B. Wiringer, M. Wischmeier, R. Wolf, E. Wolfrum, Q. Yang, Q. Yu, R. Zagórski, I. Zammuto, T. Zehetbauer, W. Zhang, W. Zholobenko, M. Zilker, A. Zito, H. Zohm, S. Zoletnik, the EUROfusion MST1 Team, Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Aix Marseille Université (AMU), Laboratoire de Physique des Plasmas (LPP), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), EUROfusion MST1 Team, Barcelona Supercomputing Center, Department of Applied Physics, Aalto-yliopisto, Aalto University, Stroth, U, Aguiam, D, Alessi, E, Angioni, C, Arden, N, Parra, R, Artigues, V, Asunta, O, Balden, M, Bandaru, V, Banon-Navarro, A, Behler, K, Bergmann, A, Bergmann, M, Bernardo, J, Bernert, M, Biancalani, A, Bielajew, R, Bilato, R, Birkenmeier, G, Blanken, T, Bobkov, V, Bock, A, Body, T, Bolzonella, T, Bonanomi, N, Bortolon, A, Boswirth, B, Bottereau, C, Bottino, A, Van Den Brand, H, Brenzke, M, Brezinsek, S, Brida, D, Brochard, F, Bruhn, C, Buchanan, J, Buhler, A, Burckhart, A, Camenen, Y, Cannas, B, Megias, P, Carlton, D, Carr, M, Carvalho, P, Castaldo, C, Cavedon, M, Cazzaniga, C, Challis, C, Chankin, A, Cianfarani, C, Clairet, F, Coda, S, Coelho, R, Coenen, J, Colas, L, Conway, G, Costea, S, Coster, D, Cote, T, Creely, A, Croci, G, Zabala, D, Cseh, G, Czarnecka, A, Cziegler, I, D'Arcangelo, O, Molin, A, David, P, Day, C, De Baar, M, De Marne, P, Delogu, R, Denk, S, Denner, P, Di Siena, A, Palacios Duran, J, Dunai, D, Drenik, A, Dreval, M, Drube, R, Dunne, M, Duval, B, Dux, R, Eich, T, Elgeti, S, Encheva, A, Engelhardt, K, Erdos, B, Erofeev, I, Esposito, B, Fable, E, Faitsch, M, Fantz, U, Farnik, M, Faugel, H, Felici, F, Ficker, O, Fietz, S, Figueredo, A, Fischer, R, Ford, O, Frassinetti, L, Froschle, M, Fuchert, G, Fuchs, J, Funfgelder, H, Futatani, S, Galazka, K, Galdon-Quiroga, J, Escola, D, Gallo, A, Gao, Y, Garavaglia, S, Munoz, M, Geiger, B, Giannone, L, Gibson, S, Gil, L, Giovannozzi, E, Gloggler, S, Gobbin, M, Martin, J, Goodman, T, Gorini, G, Gorler, T, Gradic, D, Granucci, G, Grater, A, Greuner, H, Griener, M, Groth, M, Gude, A, Guimarais, L, Gunter, S, Haas, G, Hakola, A, Ham, C, Happel, T, Den Harder, N, Harrer, G, Harrison, J, Hauer, V, Hayward-Schneider, T, Heinemann, B, Hellsten, T, Henderson, S, Hennequin, P, Herrmann, A, Heyn, E, Hitzler, F, Hobirk, J, Hofler, K, Holm, J, Holzl, M, Hopf, C, Horvath, L, Hoschen, T, Houben, A, Hubbard, A, Huber, A, Hunger, K, Igochine, V, Iliasova, M, Ilkei, T, Bjork, K, Ionita-Schrittwieser, C, Ivanova-Stanik, I, Jacob, W, Jaksic, N, Janky, F, Jansen Van Vuuren, A, Jardin, A, Jaulmes, F, Jenko, F, Jensen, T, Joffrin, E, Kallenbach, A, Kalvin, S, Kantor, M, Kappatou, A, Kardaun, O, Karhunen, J, Kasemann, C, Kasilov, S, Kendl, A, Kernbichler, W, Khilkevitch, E, Kirk, A, Hansen, S, Klevarova, V, Kocsis, G, Koleva, M, Komm, M, Kong, M, Kramer-Flecken, A, Krieger, K, Krivska, A, Kudlacek, O, Kurki-Suonio, T, Kurzan, B, Labit, B, Lackner, K, Laggner, F, Lahtinen, A, Lang, P, Lauber, P, Leuthold, N, Li, L, Likonen, J, Linder, O, Lipschultz, B, Liu, Y, Lohs, A, Lu, Z, Luda Di Cortemiglia, T, Luhmann, N, Lunt, T, Lyssoivan, A, Maceina, T, Madsen, J, Magnanimo, A, Maier, H, Mailloux, J, Maingi, R, Maj, O, Maljaars, E, Manas, P, Mancini, A, Manhard, A, Mantica, P, Mantsinen, M, Manz, P, Maraschek, M, Marchetto, C, Marrelli, L, Martin, P, Martitsch, A, Matos, F, Mayer, M, Mayoral, M, Mazon, D, Mccarthy, P, Mcdermott, R, Merkel, R, Merle, A, Meshcheriakov, D, Meyer, H, Milanesio, D, Cabrera, P, Monaco, F, Muraca, M, Nabais, F, Naulin, V, Nazikian, R, Nem, R, Nemes-Czopf, A, Neu, G, Neu, R, Nielsen, A, Nielsen, S, Nishizawa, T, Nocente, M, Noterdaeme, J, Novikau, I, Nowak, S, Oberkofler, M, Ochoukov, R, Olsen, J, Orain, F, Palermo, F, Pan, O, Papp, G, Perez, I, Pau, A, Pautasso, G, Paz-Soldan, C, Petersson, P, Piovesan, P, Piron, C, Plank, U, Plaum, B, Plock, B, Plyusnin, V, Pokol, G, Poli, E, Porte, L, Putterich, T, Ramisch, M, Rasmussen, J, Ratta, G, Ratynskaia, S, Raupp, G, Refy, D, Reich, M, Reimold, F, Reiser, D, Reisner, M, Reiter, D, Ribeiro, T, Riedl, R, Riesch, J, Rittich, D, Rodriguez, J, Rocchi, G, Rodriguez-Fernandez, P, Rodriguez-Ramos, M, Rohde, V, Ronchi, G, Ross, A, Rott, M, Rubel, M, Ryan, D, Ryter, F, Saarelma, S, Salewski, M, Salmi, A, Samoylov, O, Sanchez, L, Santos, J, Sauter, O, Schall, G, Schluter, K, Schmid, K, Schmitz, O, Schneider, P, Schrittwieser, R, Schubert, M, Schuster, C, Schwarz-Selinger, T, Schweinzer, J, Seliunin, E, Shabbir, A, Shalpegin, A, Sharapov, S, Sheikh, U, Shevelev, A, Sias, G, Siccinio, M, Sieglin, B, Sigalov, A, Silva, A, Silva, C, Silvagni, D, Simpson, J, Sipila, S, Smigelskis, E, Snicker, A, Solano, E, Sommariva, C, Sozzi, C, Spizzo, G, Spolaore, M, Stegmeir, A, Stejner, M, Stober, J, Strumberge, E, Lopez, G, Sun, H, Suttrop, W, Sytova, E, Szepesi, T, Tal, B, Tala, T, Tardini, G, Tardocchi, M, Terranova, D, Teschke, M, Thoren, E, Tierens, W, Told, D, Treutterer, W, Trevisan, G, Trier, E, Tripsky, M, Usoltceva, M, Valisa, M, Valovic, M, Van Zeeland, M, Vannini, F, Vanovac, B, Varela, P, Varoutis, S, Vianello, N, Vicente, J, Verdoolaege, G, Vierle, T, Viezzer, E, Voitsekhovitch, I, Von Toussaint, U, Wagner, D, Wang, X, Weiland, M, White, A, Willensdorfer, M, Wiringer, B, Wischmeier, M, Wolf, R, Wolfrum, E, Yang, Q, Yu, Q, Zagorski, R, Zammuto, I, Zehetbauer, T, Zhang, W, Zholobenko, W, Zilker, M, Zito, A, Zohm, H, and Zoletnik, S
- Subjects
Nuclear and High Energy Physics ,Asdex Upgrade ,confinement ,ELLM-free discharges ,sol ,Computer science ,Nuclear engineering ,ALCATOR C-MOD ,UPPER DIVERTOR ,ASDEX Upgrade ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Simulació per ordinador ,alcator c-mod ,ddc:530 ,upper divertor ,ELLM-free discharge ,SOL ,Basis (linear algebra) ,Physics ,turbulence ,transition ,h-mode plasmas ,Condensed Matter Physics ,ddc ,Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria [Àrees temàtiques de la UPC] ,Fusion reactors ,Physics and Astronomy ,CONFINEMENT MODES ,H-MODE PLASMAS ,Physics::Space Physics ,Nuclear fusion ,TURBULENCE ,ddc:620 ,confinement modes ,TRANSITION - Abstract
An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L–H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced Dα H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Peer Reviewed "Article signat per més de 50 autors/es: U. Stroth, D. Aguiam, E. Alessi, C. Angioni, N. Arden, R. Arredondo Parra, V. Artigues, O. Asunta, M. Balden, V. Bandaru, A. Banon-Navarro, K. Behler, A. Bergmann, M. Bergmann, J. Bernardo, M. Bernert, A. Biancalani, R. Bielajew, R. Bilato, G. Birkenmeier, T. Blanken, V. Bobkov, A. Bock, T. Body, T. Bolzonella, N. Bonanomi, A. Bortolon, B. Böswirth, C. Bottereau, A. Bottino, H. van den Brand, M. Brenzke, S. Brezinsek, D. Brida, F. Brochard, C. Bruhn, J. Buchanan, A. Buhler, A. Burckhart, Y. Camenen, B. Cannas, P. Cano Megias, D. Carlton, M. Carr, P. Carvalho, C. Castaldo, M. Cavedon, C. Cazzaniga, C. Challis, A. Chankin, C. Cianfarani, F. Clairet, S. Coda, R. Coelho, J.W. Coenen, L. Colas, G. Conway, S. Costea, D. Coster, T. Cote, A.J. Creely, G. Croci, D.J. Cruz Zabala, G. Cseh, A. Czarnecka, I. Cziegler, O. D'Arcangelo, A. Dal Molin, P. David, C. Day, M. de Baar, P. de Marné, R. Delogu, S. Denk, P. Denner, A. Di Siena, J.J. Dominguez Palacios Durán, D. Dunai, A. Drenik, M. Dreval, R. Drube, M. Dunne, B.P. Duval, R. Dux, T. Eich, S. Elgeti, A. Encheva, K. Engelhardt, B. Erdös, I. Erofeev, B. Esposito, E. Fable, M. Faitsch, U. Fantz, M. Farnik, H. Faugel, F. Felici, O. Ficker, S. Fietz, A. Figueredo, R. Fischer, O. Ford, L. Frassinetti, M. Fröschle, G. Fuchert, J.C. Fuchs, H. Fünfgelder, S. Futatani, K. Galazka, J. Galdon-Quiroga, D. Gallart Escolà, A. Gallo10, Y. Gao11, S. Garavaglia3, M. Garcia Muñoz16, B. Geiger21, L. Giannone1, S. Gibson32, L. Gil2, E. Giovannozzi18, S. Glöggler1, M. Gobbin8, J. Gonzalez Martin, T. Goodman, G. Gorini, T. Görler, D. Gradic, G. Granucci, A. Gräter, H. Greuner, M. Griener, M. Groth, A. Gude, L. Guimarais, S. Günter, G. Haas, A.H. Hakola, C. Ham, T. Happel, N. den Harder, G. Harrer, J. Harrison, V. Hauer, T. Hayward-Schneider, B. Heinemann, T. Hellsten, S. Henderson, P. Hennequin, A. Herrmann, E. Heyn, F. Hitzler, J. Hobirk, K. Höfler, J.H. Holm, M. Hölzl, C. Hopf, L. Horvath, T. Höschen, A. Houben, A. Hubbard, A. Huber, K. Hunger, V. Igochine, M. Iliasova, T. Ilkei, K. Insulander Björk, C. Ionita-Schrittwieser, I. Ivanova-Stanik, W. Jacob, N. Jaksic, F. Janky, A. Jansen van Vuuren, A. Jardin, F. Jaulmes, F. Jenko, T. Jensen, E. Joffrin, A. Kallenbach, S. Kálvin, M. Kantor, A. Kappatou, O. Kardaun, J. Karhunen4, C.-P. Käsemann, S. Kasilov, A. Kendl, W. Kernbichler, E. Khilkevitch, A. Kirk, S. Kjer Hansen, V. Klevarova, G. Kocsis, M. Koleva, M. Komm, M. Kong, A. Krämer-Flecken, K. Krieger, A. Krivska, O. Kudlacek, T. Kurki-Suonio, B. Kurzan, B. Labit, K. Lackner, F. Laggner, A. Lahtinen, P.T. Lang, P. Lauber, N. Leuthold, L. Li, J. Likonen, O. Linder, B. Lipschultz, Y. Liu, A. Lohs, Z. Lu, T. Luda di Cortemiglia, N.C. Luhmann, T. Lunt, A. Lyssoivan, T. Maceina, J. Madsen, A. Magnanimo, H. Maier, J. Mailloux, R. Maingi, O. Maj, E. Maljaars, P. Manas, A. Mancini, A. Manhard, P. Mantica, M. Mantsinen, P. Manz, M. Maraschek, C. Marchetto, L. Marrelli, P. Martin, A. Martitsch, F. Matos, M. Mayer, M.-L. Mayoral, D. Mazon, P.J. McCarthy, R. McDermott, R. Merkel, A. Merle, D. Meshcheriakov, H. Meyer, D. Milanesio, P. Molina Cabrera, F. Monaco, M. Muraca, F. Nabais, V. Naulin, R. Nazikian, R.D. Nem, A. Nemes-Czopf, G. Neu, R. Neu, A.H. Nielsen, S.K. Nielsen, T. Nishizawa, M. Nocente, J.-M. Noterdaeme, I. Novikau, S. Nowak, M. Oberkofler, R. Ochoukov, J. Olsen, F. Orain, F. Palermo, O. Pan, G. Papp, I. Paradela Perez, A. Pau, G. Pautasso, C. Paz-Soldan, P. Petersson, P. Piovesan, C. Piron, U. Plank, B. Plaum, B. Plöck, V. Plyusnin, G. Pokol, E. Poli, L. Porte, T. Pütterich, M. Ramisch, J. Rasmussen, G. Ratta, S. Ratynskaia, G. Raupp, D. Réfy, M. Reich1, F. Reimold, D. Reiser, M. Reisner, D. Reiter, T. Ribeiro, R. Riedl, J. Riesch, D. Rittich, J.F. Rivero Rodriguez, G. Rocchi, P. Rodriguez-Fernandez, M. Rodriguez-Ramos, V. Rohde, G. Ronchi, A. Ross, M. Rott, M. Rubel, D.A. Ryan, F. Ryter, S. Saarelma, M. Salewski, A. Salmi, O. Samoylov, L. Sanchis Sanchez, J. Santos, O. Sauter, G. Schall, K. Schlüter, K. Schmid, O. Schmitz, P.A. Schneider, R. Schrittwieser, M. Schubert, C. Schuster, T. Schwarz-Selinger, J. Schweinzer, E. Seliunin, A. Shabbir, A. Shalpegin, S. Sharapov, U. Sheikh, A. Shevelev, G. Sias, M. Siccinio, B. Sieglin, A. Sigalov, A. Silva, C. Silva, D. Silvagni, J. Simpson, S. Sipilä, E. Smigelskis, A. Snicker, E. Solano, C. Sommariva, C. Sozzi, G. Spizzo, M. Spolaore, A. Stegmeir, M. Stejner, J. Stober, E. Strumberge1, G. Suarez Lopez, H.-J. Sun, W. Suttrop, E. Sytova, T. Szepesi, B. Tál, T. Tala, G. Tardini, M. Tardocchi, D. Terranova, M. Teschke, E. Thorén, W. Tierens, D. Told, W. Treutterer, G. Trevisan, E. Trier, M. Tripský, M. Usoltceva, M. Valisa, M. Valovic, M. van Zeeland, F. Vannini, B. Vanovac, P. Varela, S. Varoutis, N. Vianello, J. Vicente, G. Verdoolaege, T. Vierle, E. Viezzer, I. Voitsekhovitch, U. von Toussaint, D. Wagner, X. Wang, M. Weiland, A.E. White, M. Willensdorfer, B. Wiringer, M. Wischmeier, R. Wolf, E. Wolfrum, Q. Yang, Q. Yu, R. Zagórski, I. Zammuto, T. Zehetbauer, W. Zhang, W. Zholobenko, M. Zilker, A. Zito, H. Zohm, S. Zoletnik and the EUROfusion MST1 Team "
- Published
- 2022
- Full Text
- View/download PDF
10. Application of laser CO2 for the treatment of xanthelasma palpebrarum
- Author
-
Delgado Navarro, C., Lanuza García, A., Llorca Cardeñosa, A., Bañón-Navarro, R., and Corchero Martin, G.
- Published
- 2013
- Full Text
- View/download PDF
11. Unsuccessful treatment with OK-432 picibanil for orbital lymphangioma
- Author
-
Lanuza García, A., Bañón Navarro, R., Llorca Cardeñosa, A., and Delgado Navarro, C.
- Published
- 2012
- Full Text
- View/download PDF
12. Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
- Author
-
Sunn Pedersen, Thomas, Abramovic, I., Agostinetti, P., Agredano Torres, M., Äkäslompolo, S., Alcuson Belloso, J., Aleynikov, P., Aleynikova, K., Alhashimi, M., Ali, A., Allen, N., Alonso, A., Anda, G., Andreeva, T., Angioni, C., Arkhipov, A., Arnold, A., Asad, W., Ascasibar, E., Aumeunier, M.-H., Avramidis, K., Aymerich, E., Baek, S.-G., Bähner, J., Baillod, A., Balden, M., Baldzuhn, J., Ballinger, S., Banduch, M., Bannmann, S., Banon Navarro, A., Bañón Navarro, A., Barbui, T., Beidler, C., Belafdil, C., Bencze, A., Benndorf, A., Beurskens, M., Biedermann, C., Biletskyi, O., Blackwell, B., Blatzheim, M., Bluhm, T., Böckenhoff, D., Bongiovi, G., Borchardt, M., Borodin, D., Boscary, J., Bosch, H., Moiseyenko, Volodymyr, Sunn Pedersen, Thomas, Abramovic, I., Agostinetti, P., Agredano Torres, M., Äkäslompolo, S., Alcuson Belloso, J., Aleynikov, P., Aleynikova, K., Alhashimi, M., Ali, A., Allen, N., Alonso, A., Anda, G., Andreeva, T., Angioni, C., Arkhipov, A., Arnold, A., Asad, W., Ascasibar, E., Aumeunier, M.-H., Avramidis, K., Aymerich, E., Baek, S.-G., Bähner, J., Baillod, A., Balden, M., Baldzuhn, J., Ballinger, S., Banduch, M., Bannmann, S., Banon Navarro, A., Bañón Navarro, A., Barbui, T., Beidler, C., Belafdil, C., Bencze, A., Benndorf, A., Beurskens, M., Biedermann, C., Biletskyi, O., Blackwell, B., Blatzheim, M., Bluhm, T., Böckenhoff, D., Bongiovi, G., Borchardt, M., Borodin, D., Boscary, J., Bosch, H., and Moiseyenko, Volodymyr
- Abstract
We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.
- Published
- 2022
- Full Text
- View/download PDF
13. Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
- Author
-
Sunn Pedersen, Thomas, primary, Abramovic, I., additional, Agostinetti, P., additional, Agredano Torres, M., additional, Äkäslompolo, S., additional, Alcuson Belloso, J., additional, Aleynikov, P., additional, Aleynikova, K., additional, Alhashimi, M., additional, Ali, A., additional, Allen, N., additional, Alonso, A., additional, Anda, G., additional, Andreeva, T., additional, Angioni, C., additional, Arkhipov, A., additional, Arnold, A., additional, Asad, W., additional, Ascasibar, E., additional, Aumeunier, M.-H., additional, Avramidis, K., additional, Aymerich, E., additional, Baek, S.-G., additional, Bähner, J., additional, Baillod, A., additional, Balden, M., additional, Baldzuhn, J., additional, Ballinger, S., additional, Banduch, M., additional, Bannmann, S., additional, Banon Navarro, A., additional, Bañón Navarro, A., additional, Barbui, T., additional, Beidler, C., additional, Belafdil, C., additional, Bencze, A., additional, Benndorf, A., additional, Beurskens, M., additional, Biedermann, C., additional, Biletskyi, O., additional, Blackwell, B., additional, Blatzheim, M., additional, Bluhm, T., additional, Böckenhoff, D., additional, Bongiovi, G., additional, Borchardt, M., additional, Borodin, D., additional, Boscary, J., additional, Bosch, H., additional, Bosmann, T., additional, Böswirth, B., additional, Böttger, L., additional, Bottino, A., additional, Bozhenkov, S., additional, Brakel, R., additional, Brandt, C., additional, Bräuer, T., additional, Braune, H., additional, Brezinsek, S., additional, Brunner, K., additional, Buller, S., additional, Burhenn, R., additional, Bussiahn, R., additional, Buttenschön, B., additional, Buzás, A., additional, Bykov, V., additional, Calvo, I., additional, Camacho Mata, K., additional, Caminal, I., additional, Cannas, B., additional, Cappa, A., additional, Carls, A., additional, Carovani, F., additional, Carr, M., additional, Carralero, D., additional, Carvalho, B., additional, Casas, J., additional, Castano-Bardawil, D., additional, Castejon, F., additional, Chaudhary, N., additional, Chelis, I., additional, Chomiczewska, A., additional, Coenen, J.W., additional, Cole, M., additional, Cordella, F., additional, Corre, Y., additional, Crombe, K., additional, Cseh, G., additional, Csillag, B., additional, Damm, H., additional, Day, C., additional, de Baar, M., additional, De la Cal, E., additional, Degenkolbe, S., additional, Demby, A., additional, Denk, S., additional, Dhard, C., additional, Di Siena, A., additional, Dinklage, A., additional, Dittmar, T., additional, Dreval, M., additional, Drevlak, M., additional, Drewelow, P., additional, Drews, P., additional, Dunai, D., additional, Edlund, E., additional, Effenberg, F., additional, Ehrke, G., additional, Endler, M., additional, Ennis, D.A., additional, Escoto, F.J., additional, Estrada, T., additional, Fable, E., additional, Fahrenkamp, N., additional, Fanni, A., additional, Faustin, J., additional, Fellinger, J., additional, Feng, Y., additional, Figacz, W., additional, Flom, E., additional, Ford, O., additional, Fornal, T., additional, Frerichs, H., additional, Freundt, S., additional, Fuchert, G., additional, Fukuyama, M., additional, Füllenbach, F., additional, Gantenbein, G., additional, Gao, Y., additional, Garcia, K., additional, García Regaña, J.M., additional, García-Cortés, I., additional, Gaspar, J., additional, Gates, D.A., additional, Geiger, J., additional, Geiger, B., additional, Giudicotti, L., additional, González, A., additional, Goriaev, A., additional, Gradic, D., additional, Grahl, M., additional, Graves, J.P., additional, Green, J., additional, Grelier, E., additional, Greuner, H., additional, Groß, S., additional, Grote, H., additional, Groth, M., additional, Gruca, M., additional, Grulke, O., additional, Grün, M., additional, Guerrero Arnaiz, J., additional, Günter, S., additional, Haak, V., additional, Haas, M., additional, Hacker, P., additional, Hakola, A., additional, Hallenbert, A., additional, Hammond, K., additional, Han, X., additional, Hansen, S.K., additional, Harris, J.H., additional, Hartfuß, H., additional, Hartmann, D., additional, Hathiramani, D., additional, Hatzky, R., additional, Hawke, J., additional, Hegedus, S., additional, Hein, B., additional, Heinemann, B., additional, Helander, P., additional, Henneberg, S., additional, Hergenhahn, U., additional, Hidalgo, C., additional, Hindenlang, F., additional, Hirsch, M., additional, Höfel, U., additional, Hollfeld, K.P., additional, Holtz, A., additional, Hopf, D., additional, Höschen, D., additional, Houry, M., additional, Howard, J., additional, Huang, X., additional, Hubeny, M., additional, Hudson, S., additional, Ida, K., additional, Igitkhanov, Y., additional, Igochine, V., additional, Illy, S., additional, Ionita-Schrittwieser, C., additional, Isobe, M., additional, Jabłczyńska, M., additional, Jablonski, S., additional, Jagielski, B., additional, Jakubowski, M., additional, Jansen van Vuuren, A., additional, Jelonnek, J., additional, Jenko, F., additional, Jensen, T., additional, Jenzsch, H., additional, Junghanns, P., additional, Kaczmarczyk, J., additional, Kallmeyer, J., additional, Kamionka, U., additional, Kandler, M., additional, Kasilov, S., additional, Kazakov, Y., additional, Kennedy, D., additional, Kharwandikar, A., additional, Khokhlov, M., additional, Kiefer, C., additional, Killer, C., additional, Kirschner, A., additional, Kleiber, R., additional, Klinger, T., additional, Klose, S., additional, Knauer, J., additional, Knieps, A., additional, Köchl, F., additional, Kocsis, G., additional, Kolesnichenko, Ya.I., additional, Könies, A., additional, König, R., additional, Kontula, J., additional, Kornejew, P., additional, Koschinsky, J., additional, Kozulia, M.M., additional, Krämer-Flecken, A., additional, Krampitz, R., additional, Krause, M., additional, Krawczyk, N., additional, Kremeyer, T., additional, Krier, L., additional, Kriete, D.M., additional, Krychowiak, M., additional, Ksiazek, I., additional, Kubkowska, M., additional, Kuczynski, M., additional, Kühner, G., additional, Kumar, A., additional, Kurki-Suonio, T., additional, Kwak, S., additional, Landreman, M., additional, Lang, P.T., additional, Langenberg, A., additional, Laqua, H.P., additional, Laqua, H., additional, Laube, R., additional, Lazerson, S., additional, Lewerentz, M., additional, Li, C., additional, Liang, Y., additional, Linsmeier, Ch., additional, Lion, J., additional, Litnovsky, A., additional, Liu, S., additional, Lobsien, J., additional, Loizu, J., additional, Lore, J., additional, Lorenz, A., additional, Losada, U., additional, Louche, F., additional, Lunsford, R., additional, Lutsenko, V., additional, Machielsen, M., additional, Mackel, F., additional, Maisano-Brown, J., additional, Maj, O., additional, Makowski, D., additional, Manduchi, G., additional, Maragkoudakis, E., additional, Marchuk, O., additional, Marsen, S., additional, Martines, E., additional, Martinez-Fernandez, J., additional, Marushchenko, M., additional, Masuzaki, S., additional, Maurer, D., additional, Mayer, M., additional, McCarthy, K.J., additional, Mccormack, O., additional, McNeely, P., additional, Meister, H., additional, Mendelevitch, B., additional, Mendes, S., additional, Merlo, A., additional, Messian, A., additional, Mielczarek, A., additional, Mishchenko, O., additional, Missal, B., additional, Mitteau, R., additional, Moiseenko, V.E., additional, Mollen, A., additional, Moncada, V., additional, Mönnich, T., additional, Morisaki, T., additional, Moseev, D., additional, Motojima, G., additional, Mulas, S., additional, Mulsow, M., additional, Nagel, M., additional, Naujoks, D., additional, Naulin, V., additional, Neelis, T., additional, Neilson, H., additional, Neu, R., additional, Neubauer, O., additional, Neuner, U., additional, Nicolai, D., additional, Nielsen, S.K., additional, Niemann, H., additional, Nishiza, T., additional, Nishizawa, T., additional, Nührenberg, C., additional, Ochoukov, R., additional, Oelmann, J., additional, Offermanns, G., additional, Ogawa, K., additional, Okamura, S., additional, Ölmanns, J., additional, Ongena, J., additional, Oosterbeek, J., additional, Otte, M., additional, Pablant, N., additional, Panadero Alvarez, N., additional, Pandey, A., additional, Pasch, E., additional, Pavlichenko, R., additional, Pavone, A., additional, Pawelec, E., additional, Pechstein, G., additional, Pelka, G., additional, Perseo, V., additional, Peterson, B., additional, Pilopp, D., additional, Pingel, S., additional, Pisano, F., additional, Plöckl, B., additional, Plunk, G., additional, Pölöskei, P., additional, Pompe, B., additional, Popov, A., additional, Porkolab, M., additional, Proll, J., additional, Pueschel, M.J., additional, Puiatti, M.-E., additional, Puig Sitjes, A., additional, Purps, F., additional, Rahbarnia, K., additional, Rasiński, M., additional, Rasmussen, J., additional, Reiman, A., additional, Reimold, F., additional, Reisner, M., additional, Reiter, D., additional, Richou, M., additional, Riedl, R., additional, Riemann, J., additional, Riße, K., additional, Roberg-Clark, G., additional, Rohde, V., additional, Romazanov, J., additional, Rondeshagen, D., additional, Rong, P., additional, Rudischhauser, L., additional, Rummel, T., additional, Rummel, K., additional, Runov, A., additional, Rust, N., additional, Ryc, L., additional, Salembier, P., additional, Salewski, M., additional, Sanchez, E., additional, Satake, S., additional, Satheeswaran, G., additional, Schacht, J., additional, Scharff, E., additional, Schauer, F., additional, Schilling, J., additional, Schlisio, G., additional, Schmid, K., additional, Schmitt, J., additional, Schmitz, O., additional, Schneider, W., additional, Schneider, M., additional, Schneider, P., additional, Schrittwieser, R., additional, Schröder, T., additional, Schröder, M., additional, Schroeder, R., additional, Schweer, B., additional, Schwörer, D., additional, Scott, E., additional, Shanahan, B., additional, Sias, G., additional, Sichta, P., additional, Singer, M., additional, Sinha, P., additional, Sipliä, S., additional, Slaby, C., additional, Sleczka, M., additional, Smith, H., additional, Smoniewski, J., additional, Sonnendrücker, E., additional, Spolaore, M., additional, Spring, A., additional, Stadler, R., additional, Stańczak, D., additional, Stange, T., additional, Stepanov, I., additional, Stephey, L., additional, Stober, J., additional, Stroth, U., additional, Strumberger, E., additional, Suzuki, C., additional, Suzuki, Y., additional, Svensson, J., additional, Szabolics, T., additional, Szepesi, T., additional, Szücs, M., additional, Tabarés, F.L., additional, Tamura, N., additional, Tancetti, A., additional, Tantos, C., additional, Terry, J., additional, Thienpondt, H., additional, Thomsen, H., additional, Thumm, M., additional, Travere, J.M., additional, Traverso, P., additional, Tretter, J., additional, Trier, E., additional, Trimino Mora, H., additional, Tsujimura, T., additional, Turkin, Y., additional, Tykhyi, A., additional, Unterberg, B., additional, van Eeten, P., additional, van Milligen, B.Ph., additional, van Schoor, M., additional, Vano, L., additional, Varoutis, S., additional, Vecsei, M., additional, Vela, L., additional, Velasco, J.L., additional, Vervier, M., additional, Vianello, N., additional, Viebke, H., additional, Vilbrandt, R., additional, Vogel, G., additional, Vogt, N., additional, Volkhausen, C., additional, von Stechow, A., additional, Wagner, F., additional, Wang, E., additional, Wang, H., additional, Warmer, F., additional, Wauters, T., additional, Wegener, L., additional, Wegner, T., additional, Weir, G., additional, Wenzel, U., additional, White, A., additional, Wilde, F., additional, Wilms, F., additional, Windisch, T., additional, Winkler, M., additional, Winter, A., additional, Winters, V., additional, Wolf, R., additional, Wright, A.M., additional, Wurden, G.A., additional, Xanthopoulos, P., additional, Xu, S., additional, Yamada, H., additional, Yamaguchi, H., additional, Yokoyama, M., additional, Yoshinuma, M., additional, Yu, Q., additional, Zamanov, M., additional, Zanini, M., additional, Zarnstorff, M., additional, Zhang, D., additional, Zhou, S., additional, Zhu, J., additional, Zhu, C., additional, Zilker, M., additional, Zocco, A., additional, Zohm, H., additional, Zoletnik, S., additional, and Zsuga, L., additional
- Published
- 2022
- Full Text
- View/download PDF
14. Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
- Author
-
Stroth, U., primary, Aguiam, D., additional, Alessi, E., additional, Angioni, C., additional, Arden, N., additional, Parra, R. Arredondo, additional, Artigues, V., additional, Asunta, O., additional, Balden, M., additional, Bandaru, V., additional, Banon-Navarro, A., additional, Behler, K., additional, Bergmann, A., additional, Bergmann, M., additional, Bernardo, J., additional, Bernert, M., additional, Biancalani, A., additional, Bielajew, R., additional, Bilato, R., additional, Birkenmeier, G., additional, Blanken, T., additional, Bobkov, V., additional, Bock, A., additional, Body, T., additional, Bolzonella, T., additional, Bonanomi, N., additional, Bortolon, A., additional, Böswirth, B., additional, Bottereau, C., additional, Bottino, A., additional, van den Brand, H., additional, Brenzke, M., additional, Brezinsek, S., additional, Brida, D., additional, Brochard, F., additional, Bruhn, C., additional, Buchanan, J., additional, Buhler, A., additional, Burckhart, A., additional, Camenen, Y., additional, Cannas, B., additional, Megias, P. Cano, additional, Carlton, D., additional, Carr, M., additional, Carvalho, P., additional, Castaldo, C., additional, Cavedon, M., additional, Cazzaniga, C., additional, Challis, C., additional, Chankin, A., additional, Cianfarani, C., additional, Clairet, F., additional, Coda, S., additional, Coelho, R., additional, Coenen, J.W., additional, Colas, L., additional, Conway, G., additional, Costea, S., additional, Coster, D., additional, Cote, T., additional, Creely, A.J., additional, Croci, G., additional, Zabala, D.J. Cruz, additional, Cseh, G., additional, Czarnecka, A., additional, Cziegler, I., additional, D’Arcangelo, O., additional, Molin, A. Dal, additional, David, P., additional, Day, C., additional, de Baar, M., additional, de Marné, P., additional, Delogu, R., additional, Denk, S., additional, Denner, P., additional, Di Siena, A., additional, Palacios Durán, J.J. Dominguez, additional, Dunai, D., additional, Drenik, A., additional, Dreval, M., additional, Drube, R., additional, Dunne, M., additional, Duval, B.P., additional, Dux, R., additional, Eich, T., additional, Elgeti, S., additional, Encheva, A., additional, Engelhardt, K., additional, Erdös, B., additional, Erofeev, I., additional, Esposito, B., additional, Fable, E., additional, Faitsch, M., additional, Fantz, U., additional, Farnik, M., additional, Faugel, H., additional, Felici, F., additional, Ficker, O., additional, Fietz, S., additional, Figueredo, A., additional, Fischer, R., additional, Ford, O., additional, Frassinetti, L., additional, Fröschle, M., additional, Fuchert, G., additional, Fuchs, J.C., additional, Fünfgelder, H., additional, Futatani, S., additional, Galazka, K., additional, Galdon-Quiroga, J., additional, Escolà, D. Gallart, additional, Gallo, A., additional, Gao, Y., additional, Garavaglia, S., additional, Muñoz, M. Garcia, additional, Geiger, B., additional, Giannone, L., additional, Gibson, S., additional, Gil, L., additional, Giovannozzi, E., additional, Glöggler, S., additional, Gobbin, M., additional, Martin, J. Gonzalez, additional, Goodman, T., additional, Gorini, G., additional, Görler, T., additional, Gradic, D., additional, Granucci, G., additional, Gräter, A., additional, Greuner, H., additional, Griener, M., additional, Groth, M., additional, Gude, A., additional, Guimarais, L., additional, Günter, S., additional, Haas, G., additional, Hakola, A.H., additional, Ham, C., additional, Happel, T., additional, den Harder, N., additional, Harrer, G., additional, Harrison, J., additional, Hauer, V., additional, Hayward-Schneider, T., additional, Heinemann, B., additional, Hellsten, T., additional, Henderson, S., additional, Hennequin, P., additional, Herrmann, A., additional, Heyn, E., additional, Hitzler, F., additional, Hobirk, J., additional, Höfler, K., additional, Holm, J.H., additional, Hölzl, M., additional, Hopf, C., additional, Horvath, L., additional, Höschen, T., additional, Houben, A., additional, Hubbard, A., additional, Huber, A., additional, Hunger, K., additional, Igochine, V., additional, Iliasova, M., additional, Ilkei, T., additional, Björk, K. Insulander, additional, Ionita-Schrittwieser, C., additional, Ivanova-Stanik, I., additional, Jacob, W., additional, Jaksic, N., additional, Janky, F., additional, Jansen van Vuuren, A., additional, Jardin, A., additional, Jaulmes, F., additional, Jenko, F., additional, Jensen, T., additional, Joffrin, E., additional, Kallenbach, A., additional, Kálvin, S., additional, Kantor, M., additional, Kappatou, A., additional, Kardaun, O., additional, Karhunen, J., additional, Käsemann, C.-P., additional, Kasilov, S., additional, Kendl, A., additional, Kernbichler, W., additional, Khilkevitch, E., additional, Kirk, A., additional, Hansen, S. Kjer, additional, Klevarova, V., additional, Kocsis, G., additional, Koleva, M., additional, Komm, M., additional, Kong, M., additional, Krämer-Flecken, A., additional, Krieger, K., additional, Krivska, A., additional, Kudlacek, O., additional, Kurki-Suonio, T., additional, Kurzan, B., additional, Labit, B., additional, Lackner, K., additional, Laggner, F., additional, Lahtinen, A., additional, Lang, P.T., additional, Lauber, P., additional, Leuthold, N., additional, Li, L., additional, Likonen, J., additional, Linder, O., additional, Lipschultz, B., additional, Liu, Y., additional, Lohs, A., additional, Lu, Z., additional, Luda di Cortemiglia, T., additional, Luhmann, N.C., additional, Lunt, T., additional, Lyssoivan, A., additional, Maceina, T., additional, Madsen, J., additional, Magnanimo, A., additional, Maier, H., additional, Mailloux, J., additional, Maingi, R., additional, Maj, O., additional, Maljaars, E., additional, Manas, P., additional, Mancini, A., additional, Manhard, A., additional, Mantica, P., additional, Mantsinen, M., additional, Manz, P., additional, Maraschek, M., additional, Marchetto, C., additional, Marrelli, L., additional, Martin, P., additional, Martitsch, A., additional, Matos, F., additional, Mayer, M., additional, Mayoral, M.-L., additional, Mazon, D., additional, McCarthy, P.J., additional, McDermott, R., additional, Merkel, R., additional, Merle, A., additional, Meshcheriakov, D., additional, Meyer, H., additional, Milanesio, D., additional, Cabrera, P. Molina, additional, Monaco, F., additional, Muraca, M., additional, Nabais, F., additional, Naulin, V., additional, Nazikian, R., additional, Nem, R.D., additional, Nemes-Czopf, A., additional, Neu, G., additional, Neu, R., additional, Nielsen, A.H., additional, Nielsen, S.K., additional, Nishizawa, T., additional, Nocente, M., additional, Noterdaeme, J.-M., additional, Novikau, I., additional, Nowak, S., additional, Oberkofler, M., additional, Ochoukov, R., additional, Olsen, J., additional, Orain, F., additional, Palermo, F., additional, Pan, O., additional, Papp, G., additional, Perez, I. Paradela, additional, Pau, A., additional, Pautasso, G., additional, Paz-Soldan, C., additional, Petersson, P., additional, Piovesan, P., additional, Piron, C., additional, Plank, U., additional, Plaum, B., additional, Plöck, B., additional, Plyusnin, V., additional, Pokol, G., additional, Poli, E., additional, Porte, L., additional, Pütterich, T., additional, Ramisch, M., additional, Rasmussen, J., additional, Ratta, G., additional, Ratynskaia, S., additional, Raupp, G., additional, Réfy, D., additional, Reich, M., additional, Reimold, F., additional, Reiser, D., additional, Reisner, M., additional, Reiter, D., additional, Ribeiro, T., additional, Riedl, R., additional, Riesch, J., additional, Rittich, D., additional, Rodriguez, J.F. Rivero, additional, Rocchi, G., additional, Rodriguez-Fernandez, P., additional, Rodriguez-Ramos, M., additional, Rohde, V., additional, Ronchi, G., additional, Ross, A., additional, Rott, M., additional, Rubel, M., additional, Ryan, D.A., additional, Ryter, F., additional, Saarelma, S., additional, Salewski, M., additional, Salmi, A., additional, Samoylov, O., additional, Sanchez, L. Sanchis, additional, Santos, J., additional, Sauter, O., additional, Schall, G., additional, Schlüter, K., additional, Schmid, K., additional, Schmitz, O., additional, Schneider, P.A., additional, Schrittwieser, R., additional, Schubert, M., additional, Schuster, C., additional, Schwarz-Selinger, T., additional, Schweinzer, J., additional, Seliunin, E., additional, Shabbir, A., additional, Shalpegin, A., additional, Sharapov, S., additional, Sheikh, U., additional, Shevelev, A., additional, Sias, G., additional, Siccinio, M., additional, Sieglin, B., additional, Sigalov, A., additional, Silva, A., additional, Silva, C., additional, Silvagni, D., additional, Simpson, J., additional, Sipilä, S., additional, Smigelskis, E., additional, Snicker, A., additional, Solano, E., additional, Sommariva, C., additional, Sozzi, C., additional, Spizzo, G., additional, Spolaore, M., additional, Stegmeir, A., additional, Stejner, M., additional, Stober, J., additional, Strumberge, E., additional, Lopez, G. Suarez, additional, Sun, H.-J., additional, Suttrop, W., additional, Sytova, E., additional, Szepesi, T., additional, Tál, B., additional, Tala, T., additional, Tardini, G., additional, Tardocchi, M., additional, Terranova, D., additional, Teschke, M., additional, Thorén, E., additional, Tierens, W., additional, Told, D., additional, Treutterer, W., additional, Trevisan, G., additional, Trier, E., additional, Tripský, M., additional, Usoltceva, M., additional, Valisa, M., additional, Valovic, M., additional, van Zeeland, M., additional, Vannini, F., additional, Vanovac, B., additional, Varela, P., additional, Varoutis, S., additional, Vianello, N., additional, Vicente, J., additional, Verdoolaege, G., additional, Vierle, T., additional, Viezzer, E., additional, Voitsekhovitch, I., additional, von Toussaint, U., additional, Wagner, D., additional, Wang, X., additional, Weiland, M., additional, White, A.E., additional, Willensdorfer, M., additional, Wiringer, B., additional, Wischmeier, M., additional, Wolf, R., additional, Wolfrum, E., additional, Yang, Q., additional, Yu, Q., additional, Zagórski, R., additional, Zammuto, I., additional, Zehetbauer, T., additional, Zhang, W., additional, Zholobenko, W., additional, Zilker, M., additional, Zito, A., additional, Zohm, H., additional, Zoletnik, S., additional, and EUROfusion MST1 Team, the, additional
- Published
- 2022
- Full Text
- View/download PDF
15. Increased core ion temperatures in high-beta advanced scenarios in AUG: Disentangling ExB-shear and fast ion effects using gyrokinetic simulations
- Author
-
Reisner, M., Di Siena, A., https://orcid.org/0000-0002-5430-6713, Banon Navarro, A., https://orcid.org/0000-0003-0487-6395, Stober, J., Bilato, R., Görler, T., https://orcid.org/0000-0002-0851-6699, Fable, E., https://orcid.org/0000-0001-5019-9685, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Published
- 2022
16. Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
- Author
-
Thomas Sunn Pedersen, I. Abramovic, P. Agostinetti, M. Agredano Torres, S. Äkäslompolo, J. Alcuson Belloso, P. Aleynikov, K. Aleynikova, M. Alhashimi, A. Ali, N. Allen, A. Alonso, G. Anda, T. Andreeva, C. Angioni, A. Arkhipov, A. Arnold, W. Asad, E. Ascasibar, M.-H. Aumeunier, K. Avramidis, E. Aymerich, S.-G. Baek, J. Bähner, A. Baillod, M. Balden, J. Baldzuhn, S. Ballinger, M. Banduch, S. Bannmann, A. Banon Navarro, A. Bañón Navarro, T. Barbui, C. Beidler, C. Belafdil, A. Bencze, A. Benndorf, M. Beurskens, C. Biedermann, O. Biletskyi, B. Blackwell, M. Blatzheim, T. Bluhm, D. Böckenhoff, G. Bongiovi, M. Borchardt, D. Borodin, J. Boscary, H. Bosch, T. Bosmann, B. Böswirth, L. Böttger, A. Bottino, S. Bozhenkov, R. Brakel, C. Brandt, T. Bräuer, H. Braune, S. Brezinsek, K. Brunner, S. Buller, R. Burhenn, R. Bussiahn, B. Buttenschön, A. Buzás, V. Bykov, I. Calvo, K. Camacho Mata, I. Caminal, B. Cannas, A. Cappa, A. Carls, F. Carovani, M. Carr, D. Carralero, B. Carvalho, J. Casas, D. Castano-Bardawil, F. Castejon, N. Chaudhary, I. Chelis, A. Chomiczewska, J.W. Coenen, M. Cole, F. Cordella, Y. Corre, K. Crombe, G. Cseh, B. Csillag, H. Damm, C. Day, M. de Baar, E. De la Cal, S. Degenkolbe, A. Demby, S. Denk, C. Dhard, A. Di Siena, A. Dinklage, T. Dittmar, M. Dreval, M. Drevlak, P. Drewelow, P. Drews, D. Dunai, E. Edlund, F. Effenberg, G. Ehrke, M. Endler, D.A. Ennis, F.J. Escoto, T. Estrada, E. Fable, N. Fahrenkamp, A. Fanni, J. Faustin, J. Fellinger, Y. Feng, W. Figacz, E. Flom, O. Ford, T. Fornal, H. Frerichs, S. Freundt, G. Fuchert, M. Fukuyama, F. Füllenbach, G. Gantenbein, Y. Gao, K. Garcia, J.M. García Regaña, I. García-Cortés, J. Gaspar, D.A. Gates, J. Geiger, B. Geiger, L. Giudicotti, A. González, A. Goriaev, D. Gradic, M. Grahl, J.P. Graves, J. Green, E. Grelier, H. Greuner, S. Groß, H. Grote, M. Groth, M. Gruca, O. Grulke, M. Grün, J. Guerrero Arnaiz, S. Günter, V. Haak, M. Haas, P. Hacker, A. Hakola, A. Hallenbert, K. Hammond, X. Han, S.K. Hansen, J.H. Harris, H. Hartfuß, D. Hartmann, D. Hathiramani, R. Hatzky, J. Hawke, S. Hegedus, B. Hein, B. Heinemann, P. Helander, S. Henneberg, U. Hergenhahn, C. Hidalgo, F. Hindenlang, M. Hirsch, U. Höfel, K.P. Hollfeld, A. Holtz, D. Hopf, D. Höschen, M. Houry, J. Howard, X. Huang, M. Hubeny, S. Hudson, K. Ida, Y. Igitkhanov, V. Igochine, S. Illy, C. Ionita-Schrittwieser, M. Isobe, M. Jabłczyńska, S. Jablonski, B. Jagielski, M. Jakubowski, A. Jansen van Vuuren, J. Jelonnek, F. Jenko, T. Jensen, H. Jenzsch, P. Junghanns, J. Kaczmarczyk, J. Kallmeyer, U. Kamionka, M. Kandler, S. Kasilov, Y. Kazakov, D. Kennedy, A. Kharwandikar, M. Khokhlov, C. Kiefer, C. Killer, A. Kirschner, R. Kleiber, T. Klinger, S. Klose, J. Knauer, A. Knieps, F. Köchl, G. Kocsis, Ya.I. Kolesnichenko, A. Könies, R. König, J. Kontula, P. Kornejew, J. Koschinsky, M.M. Kozulia, A. Krämer-Flecken, R. Krampitz, M. Krause, N. Krawczyk, T. Kremeyer, L. Krier, D.M. Kriete, M. Krychowiak, I. Ksiazek, M. Kubkowska, M. Kuczynski, G. Kühner, A. Kumar, T. Kurki-Suonio, S. Kwak, M. Landreman, P.T. Lang, A. Langenberg, H.P. Laqua, H. Laqua, R. Laube, S. Lazerson, M. Lewerentz, C. Li, Y. Liang, Ch. Linsmeier, J. Lion, A. Litnovsky, S. Liu, J. Lobsien, J. Loizu, J. Lore, A. Lorenz, U. Losada, F. Louche, R. Lunsford, V. Lutsenko, M. Machielsen, F. Mackel, J. Maisano-Brown, O. Maj, D. Makowski, G. Manduchi, E. Maragkoudakis, O. Marchuk, S. Marsen, E. Martines, J. Martinez-Fernandez, M. Marushchenko, S. Masuzaki, D. Maurer, M. Mayer, K.J. McCarthy, O. Mccormack, P. McNeely, H. Meister, B. Mendelevitch, S. Mendes, A. Merlo, A. Messian, A. Mielczarek, O. Mishchenko, B. Missal, R. Mitteau, V.E. Moiseenko, A. Mollen, V. Moncada, T. Mönnich, T. Morisaki, D. Moseev, G. Motojima, S. Mulas, M. Mulsow, M. Nagel, D. Naujoks, V. Naulin, T. Neelis, H. Neilson, R. Neu, O. Neubauer, U. Neuner, D. Nicolai, S.K. Nielsen, H. Niemann, T. Nishiza, T. Nishizawa, C. Nührenberg, R. Ochoukov, J. Oelmann, G. Offermanns, K. Ogawa, S. Okamura, J. Ölmanns, J. Ongena, J. Oosterbeek, M. Otte, N. Pablant, N. Panadero Alvarez, A. Pandey, E. Pasch, R. Pavlichenko, A. Pavone, E. Pawelec, G. Pechstein, G. Pelka, V. Perseo, B. Peterson, D. Pilopp, S. Pingel, F. Pisano, B. Plöckl, G. Plunk, P. Pölöskei, B. Pompe, A. Popov, M. Porkolab, J. Proll, M.J. Pueschel, M.-E. Puiatti, A. Puig Sitjes, F. Purps, K. Rahbarnia, M. Rasiński, J. Rasmussen, A. Reiman, F. Reimold, M. Reisner, D. Reiter, M. Richou, R. Riedl, J. Riemann, K. Riße, G. Roberg-Clark, V. Rohde, J. Romazanov, D. Rondeshagen, P. Rong, L. Rudischhauser, T. Rummel, K. Rummel, A. Runov, N. Rust, L. Ryc, P. Salembier, M. Salewski, E. Sanchez, S. Satake, G. Satheeswaran, J. Schacht, E. Scharff, F. Schauer, J. Schilling, G. Schlisio, K. Schmid, J. Schmitt, O. Schmitz, W. Schneider, M. Schneider, P. Schneider, R. Schrittwieser, T. Schröder, M. Schröder, R. Schroeder, B. Schweer, D. Schwörer, E. Scott, B. Shanahan, G. Sias, P. Sichta, M. Singer, P. Sinha, S. Sipliä, C. Slaby, M. Sleczka, H. Smith, J. Smoniewski, E. Sonnendrücker, M. Spolaore, A. Spring, R. Stadler, D. Stańczak, T. Stange, I. Stepanov, L. Stephey, J. Stober, U. Stroth, E. Strumberger, C. Suzuki, Y. Suzuki, J. Svensson, T. Szabolics, T. Szepesi, M. Szücs, F.L. Tabarés, N. Tamura, A. Tancetti, C. Tantos, J. Terry, H. Thienpondt, H. Thomsen, M. Thumm, J.M. Travere, P. Traverso, J. Tretter, E. Trier, H. Trimino Mora, T. Tsujimura, Y. Turkin, A. Tykhyi, B. Unterberg, P. van Eeten, B.Ph. van Milligen, M. van Schoor, L. Vano, S. Varoutis, M. Vecsei, L. Vela, J.L. Velasco, M. Vervier, N. Vianello, H. Viebke, R. Vilbrandt, G. Vogel, N. Vogt, C. Volkhausen, A. von Stechow, F. Wagner, E. Wang, H. Wang, F. Warmer, T. Wauters, L. Wegener, T. Wegner, G. Weir, U. Wenzel, A. White, F. Wilde, F. Wilms, T. Windisch, M. Winkler, A. Winter, V. Winters, R. Wolf, A.M. Wright, G.A. Wurden, P. Xanthopoulos, S. Xu, H. Yamada, H. Yamaguchi, M. Yokoyama, M. Yoshinuma, Q. Yu, M. Zamanov, M. Zanini, M. Zarnstorff, D. Zhang, S. Zhou, J. Zhu, C. Zhu, M. Zilker, A. Zocco, H. Zohm, S. Zoletnik, L. Zsuga, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo, Universitat Politècnica de Catalunya. GREO - Grup de Recerca en Enginyeria Òptica, Pedersen, T, Abramovic, I, Agostinetti, P, Torres, M, Akaslompolo, S, Belloso, J, Aleynikov, P, Aleynikova, K, Alhashimi, M, Ali, A, Allen, N, Alonso, A, Anda, G, Andreeva, T, Angioni, C, Arkhipov, A, Arnold, A, Asad, W, Ascasibar, E, Aumeunier, M, Avramidis, K, Aymerich, E, Baek, S, Bahner, J, Baillod, A, Balden, M, Baldzuhn, J, Ballinger, S, Banduch, M, Bannmann, S, Navarro, A, Barbui, T, Beidler, C, Belafdil, C, Bencze, A, Benndorf, A, Beurskens, M, Biedermann, C, Biletskyi, O, Blackwell, B, Blatzheim, M, Bluhm, T, Bockenhoff, D, Bongiovi, G, Borchardt, M, Borodin, D, Boscary, J, Bosch, H, Bosmann, T, Boswirth, B, Bottger, L, Bottino, A, Bozhenkov, S, Brakel, R, Brandt, C, Brauer, T, Braune, H, Brezinsek, S, Brunner, K, Buller, S, Burhenn, R, Bussiahn, R, Buttenschon, B, Buzas, A, Bykov, V, Calvo, I, Mata, K, Caminal, I, Cannas, B, Cappa, A, Carls, A, Carovani, F, Carr, M, Carralero, D, Carvalho, B, Casas, J, Castano-Bardawil, D, Castejon, F, Chaudhary, N, Chelis, I, Chomiczewska, A, Coenen, J, Cole, M, Cordella, F, Corre, Y, Crombe, K, Cseh, G, Csillag, B, Damm, H, Day, C, de Baar, M, De la Cal, E, Degenkolbe, S, Demby, A, Denk, S, Dhard, C, Di Siena, A, Dinklage, A, Dittmar, T, Dreval, M, Drevlak, M, Drewelow, P, Drews, P, Dunai, D, Edlund, E, Effenberg, F, Ehrke, G, Endler, M, Ennis, D, Escoto, F, Estrada, T, Fable, E, Fahrenkamp, N, Fanni, A, Faustin, J, Fellinger, J, Feng, Y, Figacz, W, Flom, E, Ford, O, Fornal, T, Frerichs, H, Freundt, S, Fuchert, G, Fukuyama, M, Fullenbach, F, Gantenbein, G, Gao, Y, Garcia, K, Regana, J, Garcia-Cortes, I, Gaspar, J, Gates, D, Geiger, J, Geiger, B, Giudicotti, L, Gonzalez, A, Goriaev, A, Gradic, D, Grahl, M, Graves, J, Green, J, Grelier, E, Greuner, H, Gross, S, Grote, H, Groth, M, Gruca, M, Grulke, O, Grun, M, Arnaiz, J, Gunter, S, Haak, V, Haas, M, Hacker, P, Hakola, A, Hallenbert, A, Hammond, K, Han, X, Hansen, S, Harris, J, Hartfuss, H, Hartmann, D, Hathiramani, D, Hatzky, R, Hawke, J, Hegedus, S, Hein, B, Heinemann, B, Helander, P, Henneberg, S, Hergenhahn, U, Hidalgo, C, Hindenlang, F, Hirsch, M, Hofel, U, Hollfeld, K, Holtz, A, Hopf, D, Hoschen, D, Houry, M, Howard, J, Huang, X, Hubeny, M, Hudson, S, Ida, K, Igitkhanov, Y, Igochine, V, Illy, S, Ionita-Schrittwieser, C, Isobe, M, Jablczynska, M, Jablonski, S, Jagielski, B, Jakubowski, M, van Vuuren, A, Jelonnek, J, Jenko, F, Jensen, T, Jenzsch, H, Junghanns, P, Kaczmarczyk, J, Kallmeyer, J, Kamionka, U, Kandler, M, Kasilov, S, Kazakov, Y, Kennedy, D, Kharwandikar, A, Khokhlov, M, Kiefer, C, Killer, C, Kirschner, A, Kleiber, R, Klinger, T, Klose, S, Knauer, J, Knieps, A, Kochl, F, Kocsis, G, Kolesnichenko, Y, Konies, A, Konig, R, Kontula, J, Kornejew, P, Koschinsky, J, Kozulia, M, Kramer-Flecken, A, Krampitz, R, Krause, M, Krawczyk, N, Kremeyer, T, Krier, L, Kriete, D, Krychowiak, M, Ksiazek, I, Kubkowska, M, Kuczynski, M, Kuhner, G, Kumar, A, Kurki-Suonio, T, Kwak, S, Landreman, M, Lang, P, Langenberg, A, Laqua, H, Laube, R, Lazerson, S, Lewerentz, M, Li, C, Liang, Y, Linsmeier, C, Lion, J, Litnovsky, A, Liu, S, Lobsien, J, Loizu, J, Lore, J, Lorenz, A, Losada, U, Louche, F, Lunsford, R, Lutsenko, V, Machielsen, M, Mackel, F, Maisano-Brown, J, Maj, O, Makowski, D, Manduchi, G, Maragkoudakis, E, Marchuk, O, Marsen, S, Martines, E, Martinez-Fernandez, J, Marushchenko, M, Masuzaki, S, Maurer, D, Mayer, M, Mccarthy, K, Mccormack, O, Mcneely, P, Meister, H, Mendelevitch, B, Mendes, S, Merlo, A, Messian, A, Mielczarek, A, Mishchenko, O, Missal, B, Mitteau, R, Moiseenko, V, Mollen, A, Moncada, V, Monnich, T, Morisaki, T, Moseev, D, Motojima, G, Mulas, S, Mulsow, M, Nagel, M, Naujoks, D, Naulin, V, Neelis, T, Neilson, H, Neu, R, Neubauer, O, Neuner, U, Nicolai, D, Nielsen, S, Niemann, H, Nishiza, T, Nishizawa, T, Nuhrenberg, C, Ochoukov, R, Oelmann, J, Offermanns, G, Ogawa, K, Okamura, S, Olmanns, J, Ongena, J, Oosterbeek, J, Otte, M, Pablant, N, Alvarez, N, Pandey, A, Pasch, E, Pavlichenko, R, Pavone, A, Pawelec, E, Pechstein, G, Pelka, G, Perseo, V, Peterson, B, Pilopp, D, Pingel, S, Pisano, F, Plockl, B, Plunk, G, Poloskei, P, Pompe, B, Popov, A, Porkolab, M, Proll, J, Pueschel, M, Puiatti, M, Sitjes, A, Purps, F, Rahbarnia, K, Rasinski, M, Rasmussen, J, Reiman, A, Reimold, F, Reisner, M, Reiter, D, Richou, M, Riedl, R, Riemann, J, Risse, K, Roberg-Clark, G, Rohde, V, Romazanov, J, Rondeshagen, D, Rong, P, Rudischhauser, L, Rummel, T, Rummel, K, Runov, A, Rust, N, Ryc, L, Salembier, P, Salewski, M, Sanchez, E, Satake, S, Satheeswaran, G, Schacht, J, Scharff, E, Schauer, F, Schilling, J, Schlisio, G, Schmid, K, Schmitt, J, Schmitz, O, Schneider, W, Schneider, M, Schneider, P, Schrittwieser, R, Schroder, T, Schroder, M, Schroeder, R, Schweer, B, Schworer, D, Scott, E, Shanahan, B, Sias, G, Sichta, P, Singer, M, Sinha, P, Siplia, S, Slaby, C, Sleczka, M, Smith, H, Smoniewski, J, Sonnendrucker, E, Spolaore, M, Spring, A, Stadler, R, Stanczak, D, Stange, T, Stepanov, I, Stephey, L, Stober, J, Stroth, U, Strumberger, E, Suzuki, C, Suzuki, Y, Svensson, J, Szabolics, T, Szepesi, T, Szucs, M, Tabares, F, Tamura, N, Tancetti, A, Tantos, C, Terry, J, Thienpondt, H, Thomsen, H, Thumm, M, Travere, J, Traverso, P, Tretter, J, Trier, E, Mora, H, Tsujimura, T, Turkin, Y, Tykhyi, A, Unterberg, B, van Eeten, P, van Milligen, B, van Schoor, M, Vano, L, Varoutis, S, Vecsei, M, Vela, L, Velasco, J, Vervier, M, Vianello, N, Viebke, H, Vilbrandt, R, Vogel, G, Vogt, N, Volkhausen, C, von Stechow, A, Wagner, F, Wang, E, Wang, H, Warmer, F, Wauters, T, Wegener, L, Wegner, T, Weir, G, Wenzel, U, White, A, Wilde, F, Wilms, F, Windisch, T, Winkler, M, Winter, A, Winters, V, Wolf, R, Wright, A, Wurden, G, Xanthopoulos, P, Xu, S, Yamada, H, Yamaguchi, H, Yokoyama, M, Yoshinuma, M, Yu, Q, Zamanov, M, Zanini, M, Zarnstorff, M, Zhang, D, Zhou, S, Zhu, J, Zhu, C, Zilker, M, Zocco, A, Zohm, H, Zoletnik, S, Zsuga, L, Fusion and Plasma Physics, Department of Applied Physics, National Institute for Fusion Science, Aalto-yliopisto, Aalto University, Science and Technology of Nuclear Fusion, Group Heemels, Control Systems Technology, and Turbulence in Fusion Plasmas
- Subjects
Magnetic confinement ,Nuclear and High Energy Physics ,Technology ,Materials science ,Detachment ,Nuclear engineering ,Física::Física de partícules [Àrees temàtiques de la UPC] ,Imatges -- Processament ,stellarator ,Divertor ,Image processing ,Physics::Plasma Physics ,divertor ,Wendelstein 7-X ,ddc:530 ,FIS/03 - FISICA DELLA MATERIA ,Neoclassical optimization ,Stellarators ,Reactors de fusió ,magnetic confinement ,Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo [Àrees temàtiques de la UPC] ,Condensed Matter Physics ,ddc ,Fusion reactors ,Physics and Astronomy ,detachment ,neoclassical optimization ,ddc:620 ,ddc:600 ,Paper ,FEC 2020 Summaries and Overviews - Abstract
We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053. Peer Reviewed Article signat per 497 autors/es: Thomas Sunn Pedersen1,2,∗ , I. Abramovic3, P. Agostinetti4, M. Agredano Torres1, S. Äkäslompolo1, J. Alcuson Belloso1, P. Aleynikov1, K. Aleynikova1, M. Alhashimi1, A. Ali1, N. Allen5, A. Alonso6, G. Anda7, T. Andreeva1, C. Angioni8, A. Arkhipov8, A. Arnold1, W. Asad8, E. Ascasibar6, M.-H. Aumeunier9, K. Avramidis10, E. Aymerich11, S.-G. Baek3, J. Bähner1, A. Baillod12, M. Balden1, M. Balden8, J. Baldzuhn1, S. Ballinger3, M. Banduch1, S. Bannmann1, A. Banon Navarro8, A. Bañon Navarro ´ 1, T. Barbui13, C. Beidler1, C. Belafdil9, A. Bencze7, A. Benndorf1, M. Beurskens1, C. Biedermann1, O. Biletskyi14, B. Blackwell15, M. Blatzheim1, T. Bluhm1, D. Böckenhoff1, G. Bongiovi16, M. Borchardt1, D. Borodin17, J. Boscary8, H. Bosch1,18, T. Bosmann19, B. Böswirth8, L. Böttger1, A. Bottino8, S. Bozhenkov1, R. Brakel1, C. Brandt1, T. Bräuer1, H. Braune1, S. Brezinsek17, K. Brunner1, S. Buller1, R. Burhenn1, R. Bussiahn1, B. Buttenschön1, A. Buzás7, V. Bykov1, I. Calvo6, K. Camacho Mata1, I. Caminal20, B. Cannas11, A. Cappa6, A. Carls1, F. Carovani1, M. Carr21, D. Carralero6, B. Carvalho22, J. Casas20, D. Castano-Bardawil17, F. Castejon6, N. Chaudhary1, I. Chelis23, A. Chomiczewska24, J.W. Coenen13,17, M. Cole1, F. Cordella25, Y. Corre9, K. Crombe26, G. Cseh7, B. Csillag7, H. Damm1, C. Day10, M. de Baar27, E. De la Cal6, S. Degenkolbe1, A. Demby13, S. Denk3, C. Dhard1, A. Di Siena8,28, A. Dinklage12, T. Dittmar17, M. Dreval14, M. Drevlak1, P. Drewelow1, P. Drews17, D. Dunai7, E. Edlund3, F. Effenberg29, G. Ehrke1, M. Endler1, D.A. Ennis5, F.J. Escoto6, T. Estrada6, E. Fable8, N. Fahrenkamp1, A. Fanni11, J. Faustin1, J. Fellinger1, Y. Feng1, W. Figacz4, E. Flom13, O. Ford1, T. Fornal24, H. Frerichs13, S. Freundt1, G. Fuchert1, M. Fukuyama30, F. Füllenbach1, G. Gantenbein10, Y. Gao1, K. Garcia13, J.M. García Regaña6, I. García-Cortés6, J. Gaspar31, D.A. Gates29, J. Geiger1, B. Geiger13, L. Giudicotti32, A. González6, A. Goriaev26,33, D. Gradic1, M. Grahl1, J.P. Graves12, J. Green13, E. Grelier9, H. Greuner8, S. Groß1, H. Grote1, M. Groth34, M. Gruca24, O. Grulke1,35, M. Grün1, J. Guerrero Arnaiz1, S. Günter8, V. Haak1, M. Haas1, P. Hacker1, A. Hakola36, A. Hallenbert1, K. Hammond29, X. Han17,37, S.K. Hansen3, J.H. Harris38, H. Hartfuß1, D. Hartmann1, D. Hathiramani1, R. Hatzky8, J. Hawke39, S. Hegedus7, B. Hein8, B. Heinemann8, P. Helander12, S. Henneberg1, U. Hergenhahn8,40, C. Hidalgo6, F. Hindenlang8, M. Hirsch1, U. Höfel1, K.P. Hollfeld17, A. Holtz1, D. Hopf8, D. Höschen17, M. Houry9, J. Howard19, X. Huang41, M. Hubeny17, S. Hudson29, K. Ida9, Y. Igitkhanov10, V. Igochine8, S. Illy10, C. Ionita-Schrittwieser42, M. Isobe39, M. Jabłczynska ´ 24, S. Jablonski24, B. Jagielski1, M. Jakubowski1, A. Jansen van Vuuren1, J. Jelonnek10, F. Jenko8, F. Jenko8, T. Jensen35, H. Jenzsch1, P. Junghanns8, J. Kaczmarczyk24, J. Kallmeyer1, U. Kamionka1, M. Kandler8, S. Kasilov43, Y. Kazakov26, D. Kennedy1, A. Kharwandikar1, M. Khokhlov1, C. Kiefer8, C. Killer1, A. Kirschner17, R. Kleiber1, T. Klinger12, S. Klose1, J. Knauer1, A. Knieps17, F. Köchl44, G. Kocsis7, Ya.I. Kolesnichenko45, A. Könies1, R. König1, J. Kontula34, P. Kornejew1, J. Koschinsky, M.M. Kozulia14, A. Krämer-Flecken17, R. Krampitz1, M. Krause1, N. Krawczyk24, T. Kremeyer1, L. Krier10, D.M. Kriete5, M. Krychowiak1, I. Ksiazek46, M. Kubkowska24, M. Kuczynski1, G. Kühner1, A. Kumar15, T. Kurki-Suonio34, S. Kwak1, M. Landreman47, P.T. Lang8, A. Langenberg1, H.P. Laqua12, H. Laqua1, R. Laube1, S. Lazerson1, M. Lewerentz1, C. Li17, Y. Liang17, Ch. Linsmeier17, J. Lion1, A. Litnovsky17,48, S. Liu37, J. Lobsien1, J. Loizu12, J. Lore38, A. Lorenz1, U. Losada6, F. Louche26, R. Lunsford29, V. Lutsenko45, M. Machielsen12, F. Mackel8, J. Maisano-Brown3, O. Maj8, D. Makowski49, G. Manduchi50, E. Maragkoudakis6, O. Marchuk17, S. Marsen1, E. Martines4, J. Martinez-Fernandez6, M. Marushchenko1, S. Masuzaki41, D. Maurer5, M. Mayer8, K.J. McCarthy6, O. Mccormack4, P. McNeely1, H. Meister8, B. Mendelevitch8, S. Mendes1, A. Merlo1, A. Messian26, A. Mielczarek49, O. Mishchenko1, B. Missal1, R. Mitteau9, V.E. Moiseenko14, A. Mollen1, V. Moncada9, T. Mönnich1, T. Morisaki41, D. Moseev1, G. Motojima41, S. Mulas6, M. Mulsow1, M. Nagel1, D. Naujoks1, V. Naulin35, T. Neelis19, H. Neilson29, R. Neu8, O. Neubauer17, U. Neuner1, D. Nicolai17, S.K. Nielsen35, H. Niemann1, T. Nishiza1, T. Nishizawa1, T. Nishizawa8, C. Nührenberg1, R. Ochoukov8, J. Oelmann17, G. Offermanns17 K. Ogawa41, S. Okamura41, J. Ölmanns17, J. Ongena26, J. Oosterbeek1, M. Otte1, N. Pablant29, N. Panadero Alvarez6, N. Panadero Alvarez6, A. Pandey1, E. Pasch1, R. Pavlichenko14, A. Pavone1, E. Pawelec46, G. Pechstein1, G. Pelka24, V. Perseo1, B. Peterson41, D. Pilopp1, S. Pingel1, F. Pisano11, B. Plöckl8, G. Plunk1, P. Pölöskei1, B. Pompe2, A. Popov51, M. Porkolab3, J. Proll19, M.J. Pueschel19,27, M.-E. Puiatti52, A. Puig Sitjes1, F. Purps1, K. Rahbarnia1, M. Rasinski ´ 17, J. Rasmussen35, A. Reiman29, F. Reimold1, M. Reisner8, D. Reiter17, M. Richou9, R. Riedl8, J. Riemann1, K. Riße1, G. Roberg-Clark1, V. Rohde8, J. Romazanov17, D. Rondeshagen1, P. Rong1, L. Rudischhauser1, T. Rummel1, K. Rummel1, A. Runov1, N. Rust1, L. Ryc24, P. Salembier20, M. Salewski35, E. Sanchez6, S. Satake41, G. Satheeswaran17, J. Schacht1, E. Scharff1, F. Schauer8, J. Schilling1, G. Schlisio1, K. Schmid8, J. Schmitt5, O. Schmitz13, W. Schneider1, M. Schneider1, P. Schneider8, R. Schrittwieser42, T. Schröder1, M. Schröder1, R. Schroeder1, B. Schweer26, D. Schwörer1, E. Scott1, E. Scott8, B. Shanahan1, G. Sias11, P. Sichta29, M. Singer1, P. Sinha29, S. Sipliä34, C. Slaby1, M. Sleczka53, H. Smith1, J. Smoniewski54, E. Sonnendrücker8, M. Spolaore4, A. Spring1, R. Stadler8, D. Stanczak24, T. Stange1, I. Stepanov26, L. Stephey13, J. Stober8, U. Stroth8,55, E. Strumberger8, C. Suzuki41, Y. Suzuki41, J. Svensson1, T. Szabolics7, T. Szepesi7, M. Szücs7, F.L. Tabares6, N. Tamura41, A. Tancetti35, C. Tantos10, J. Terry3, H. Thienpondt6, H. Thomsen1, M. Thumm10, J.M. Travere9, P. Traverso5, J. Tretter8, E. Trier8, H. Trimino Mora1, T. Tsujimura41, Y. Turkin1, A. Tykhyi45, B. Unterberg17, P. van Eeten1, B.Ph. van Milligen6, M. van Schoor26, L. Vano1, S. Varoutis10, M. Vecsei7, L. Vela56, J.L. Velasco6, M. Vervier17, N. Vianello50, H. Viebke1, R. Vilbrandt1, G. Vogel8, N. Vogt1, C. Volkhausen1, A. von Stechow1, F. Wagner1, E. Wang17, H. Wang57, F. Warmer1, T. Wauters26, L. Wegener1, T. Wegner1, G. Weir1, U. Wenzel1, A. White3, F. Wilde1, F. Wilms1, T. Windisch1, M. Winkler1, A. Winter1, V. Winters1, R. Wolf118, A.M. Wright29, G.A. Wurden39, P. Xanthopoulos1, S. Xu17, H. Yamada58, H. Yamaguchi41, M. Yokoyama41, M. Yoshinuma41, Q. Yu8, M. Zamanov14, M. Zanini1, M. Zarnstorff29, D. Zhang1, S. Zhou17, J. Zhu1, C. Zhu29, M. Zilker8, A. Zocco1, H. Zohm8, S. Zoletnik7 and L. Zsuga7 // 1 Max Planck Institute for Plasma Physics, Garching and Greifswald, Germany: 2 University of Greifswald, Greifswald, Germany; 3 Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States of America; 4 Consorzio RFX, Corso Stati Uniti, 4-35127 Padova, Italy; 5 Auburn University, Auburn, AL 36849, United States of America; 6 CIEMAT, Avenida Complutense, 40, 28040 Madrid, Spain; 7 Center for Energy Research, Konkoly-Thegeut 29-33, 1121 Budapest, Hungary; 8 Max-Planck-Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching bei München, Germany; 9 CEA Cadarache, 13115 Saint-Paul-lez-Durance, France; 10 Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany; 11 University of Cagliari, Via Universita, 40, 09124 Cagliari, Italy; 12 École Polytechnique Fédérale de Lausanne, Swiss Plasma Center, CH-1015 Lausanne, Switzerland; 13 University of Wisconsin–Madison, Engineering Drive, Madison, WI 53706, United States of America; 14 Institute of Plasma Physics, National Science Center ‘Kharkiv Institute of Physics and Technology’, Kharkiv, Ukraine; 15 The Australian National University, Acton ACT 2601, Canberra, Australia; 16 Department of Engineering, University of Palermo, Viale delle Scienze, Edificio 6, Palermo, 90128, Italy; 17 Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany; 18 Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; 19 Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands; 20 Universitat Politècnica de Catalunya. BarcelonaTech, C. Jordi Girona, 31, 08034 Barcelona, Spain; 21 Culham Center for Fusion Energy, Abingdon OX14 3EB, United Kingdom; 22 Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; 23 Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece; 24 Institute of Plasma Physics and Laser Microfusion, 23 Hery Str., 01-497 Warsaw, Poland; 25 ENEA—Centro Ricerche Frascati, Via Enrico Fermi, 45, 00044 Frascati RM, Italy; 26 Laboratory for Plasma Physics, LPP-ERM/KMS, TEC Partner, B-1000 Brussels, Belgium; 27 Dutch Institute for Fundamental Energy Research, PO Box 6336, 5600 HH Eindhoven, Netherlands; 28 University of Texas, Austin, TX, United States of America; 29 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, United States of America; 30 Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan; 31 Aix-Marseille University, Jardin du Pharo, 58 Boulevard Charles Livon, 13007, Marseille, France; 32 Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova, Italy; 33 Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; 34 Aalto University, 02150 Espoo, Finland; 35 Department of Physics, Technical University of Denmark, Anker Engelunds Vej, 2800 Kgs Lyngby, Denmark; 36 VTT Technical Research Center of Finland Ltd., PO Box 1000, FI-02044 VTT, Finland; 37 Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei, Anhui, China; 38 Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, United States of America; 39 Los Alamos National Laboratory, NM 87545, United States of America; 40 Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany; 41 National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki, Gifu Prefecture 509-5292, Japan; 42 Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria; 43 Graz University of Technology, Rechbauerstraße 12, 8010 GRAZ, Austria; 44 Austrian Academy of Science, Doktor-Ignaz-Seipel-Platz 2, 1010 Wien, Austria; 45 Institute for Nuclear Research, prospekt Nauky 47, Kyiv 03028, Ukraine; 46 University of Opole, plac Kopernika 11a, 45-001 Opole, Poland; 47 University of Maryland, Paint Branch Drive, College Park, MA 20742, United States of America; 48 National Research Nuclear University MEPhI, 115409 Moscow, Russian Federation; 49 Department of Microelectronics and Computer Science, Lodz University of Technology, Wolczanska 221/223, 90-924 Lodz, Poland; 50 Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, 7, 00185 Roma, Italy; 51 Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation; 52 Istituto di Fisica del Plasma Piero Caldirola, Via Roberto Cozzi, 53, 20125 Milano, Italy; 53 University of Szczecin, 70-453, aleja Papieza Jana Pawła II 22A, Szczecin, Poland; 54 Lawrence University, 711 E Boldt Way, Appleton, WI 54911, United States of America; 55 Physik-Department E28, Technische Universität München, 85747 Garching, Germany; 56 Universidad Carlos III de Madrid, Av. de la Universidad, 30 Madrid, Spain; 57 Yale University, New Haven, CT 06520, United States of America; 58 University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chhiab 277-0882, Japan Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.a - Per a 2030, augmentar la cooperació internacional per tal de facilitar l’accés a la investigació i a les tecnologies energètiques no contaminants, incloses les fonts d’energia renovables, l’eficiència energètica i les tecnologies de combustibles fòssils avançades i menys contaminants, i promoure la inversió en infraestructures energètiques i tecnologies d’energia no contaminant
- Published
- 2022
- Full Text
- View/download PDF
17. First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER
- Author
-
Garcia, J., Dumont, R. J., Joly, J., Morales, J., Garzotti, L., Bache, T. W., Baranov, Y., Casson, F. J., Challis, C., Kirov, K., Mailloux, J., Saarelma, S., Nocente, M., Banon-Navarro, A., Goerler, T., Citrin, J., Ho, A., Gallart, D., Mantsinen, M., Abduallev, (Abduallev, S, ( 8, S., 42, ), Abhangi, (Abhangi, M, ( 8, M., 54, ), Abreu, (Abreu, P, ( 8, P., 60, ), Afanasev, (Afanasev, V, V)(, 8, 61, ), Afzal, (Afzal, M, 14, ), Aggarwal, (Aggarwal, Km, ( 8, K. M., 85, ), Ahlgren, (Ahlgren, T, ( 8, T., 106, ), Aho-Mantila, (Aho-Mantila, L, ( 8, L., 113, ), Aiba, (Aiba, N, ( 8, N., 73, ), Airila, (Airila, M, Alarcon, (Alarcon, T, 15, ), Albanese, (Albanese, R, ( 8, R., 18, ), Alegre, (Alegre, D, ( 8, D., 64, ), Aleiferis, (Aleiferis, S, 75, ), Alessi, (Alessi, E, ( 8, E., 50, ), Aleynikov, (Aleynikov, P, 62, ), Alkseev, (Alkseev, A, ( 8, A., 76, ), Allinson, (Allinson, M, Alper, (Alper, B, ( 8, B., Alves, (Alves, E, Ambrosino, (Ambrosino, G, ( 8, G., (Ambrosino, R, Amosov, (Amosov, V, 95, ), Sunden, (Sunden, Ea, Andersson)( 8, E., 26, ), Andrews, (Andrews, R, Angelone, (Angelone, M, 96, ), Anghel, (Anghel, M, 92, ), Angioni, (Angioni, C, ( 8, C., 68, ), Appel, (Appel, L, Appelbee, (Appelbee, C, Arena, Paolo Pietro, (Arena, P, 34, ), Ariola, (Ariola, M, Arshad, (Arshad, S, 45, ), Artaud, (Artaud, J, ( 8, J., Arter, (Arter, W, ( 8, W., Ash, (Ash, A, Ashikawa, (Ashikawa, N, ( 8 ), N., Aslanyan, (Aslanyan, V, 70, ), Asunta, (Asunta, O, ( 8, O., Asztalos, 9, (Asztalos, O, 114, ), Auriemma, (Auriemma, F, ( 8, F., 19, ), Austin, (Austin, Y, ( 8, Y., Avotina, (Avotina, L, 109, ), Axton, (Axton, M, Ayres, (Ayres, C, Baciero, (Baciero, A, Baiao, (Baiao, D, Balboa, (Balboa, I, I)(, 8, Balden, (Balden, M, Balshaw, (Balshaw, N, Bandaru, (Bandaru, Vk, ( 8, V. K., Banks, (Banks, J, Baranov, (Baranov, Yf, ( 8, Y. F., Barcellona, (Barcellona, C, Barnard, (Barnard, T, Barnes, (Barnes, M, 84, ), Barnsley, (Barnsley, R, Wiechec, (Wiechec, Ab, Baron)( 8, A., Orte, (Orte, Lb, Barrera)( 8, L., 37, ), Baruzzo, (Baruzzo, M, Basiuk, (Basiuk, V, Bassan, (Bassan, M, Bastow, (Bastow, R, 82, ), Batista, (Batista, A, Batistoni, (Batistoni, P, Baumane, (Baumane, L, Bauvir, (Bauvir, B, Baylor, (Baylor, L, 77, ), Beaumont, (Beaumont, Ps, ( 8, P. S., Beckers, (Beckers, M, Beckett, (Beckett, B, Bekris, (Bekris, N, 38, ), Beldishevski, (Beldishevski, M, Bell, (Bell, K, ( 8, K., Belli, (Belli, F, Belonohy, (Belonohy, E, ( 8 ), E., Benayas, (Benayas, J, Bergsaker, (Bergsaker, H, ( 8, H., 46, ), Bernardo, (Bernardo, J, Bernert, (Bernert, M, Berry, (Berry, M, Bertalot, (Bertalot, L, Besiliu, (Besiliu, C, Betar, (Betar, H, 51, ), Beurskens, (Beurskens, M, 69, ), Bielecki, (Bielecki, J, 55, ), Biewer, (Biewer, T, Bilato, (Bilato, R, Biletskyi, (Biletskyi, O, 53, ), Bilkova, (Bilkova, P, 58, ), Binda, (Binda, F, Birkenmeier, (Birkenmeier, G, Bizarro, Jps, (Bizarro, ( 8, J. P. S., Bjorkas, (Bjorkas, C, Blackburn, (Blackburn, J, Blackman, (Blackman, Tr, ( 8, T. R., Blanchard, (Blanchard, P, 36, ), Blatchford, (Blatchford, P, Bobkov, (Bobkov, V, Boboc, (Boboc, A, Bogar, (Bogar, O, 24, ), Bohm, (Bohm, P, (Bohm, T, 112, ), Bolshakova, (Bolshakova, I, 67, ), Bolzonella, (Bolzonella, T, Bonanomi, (Bonanomi, N, 104, ), Boncagni, (Boncagni, L, Bonfiglio, (Bonfiglio, D, Bonnin, (Bonnin, X, ( 8, X., Boom, (Boom, J, Borba, (Borba, D, Borodin, (Borodin, D, Borodkina, (Borodkina, I, Boulbe, (Boulbe, C, 102, ), Bourdelle, (Bourdelle, C, Bowden, (Bowden, M, Bowman, (Bowman, C, 115, ), Boyce, (Boyce, T, Boyer, (Boyer, H, Bradnam, (Bradnam, Sc, ( 8, S. C., Braic, (Braic, V, 94, ), Bravanec, (Bravanec, R, 44, ), Breizman, (Breizman, B, 52, ), Brennan, (Brennan, D, Breton, (Breton, S, Brett, (Brett, A, Brezinsek, (Brezinsek, S, Bright, (Bright, M, Brix, (Brix, M, Broeckx, (Broeckx, W, 86, ), Brombin, (Brombin, M, Broslawski, (Broslawski, A, 71, ), Brown, (Brown, B, Brunetti, (Brunetti, D, Bruno, (Bruno, E, Buch, (Buch, J, Buchanan, (Buchanan, J, Buckingham, (Buckingham, R, Buckley, (Buckley, M, Bucolo, MAIDE ANGELA RITA, (Bucolo, M, Budny, (Budny, R, 80, ), Bufferand, (Bufferand, H, Buller, (Buller, S, 28, ), Bunting, (Bunting, P, Buratti, (Buratti, P, Burckhart, (Burckhart, A, Burroughes, (Burroughes, G, Buscarino, Arturo, (Buscarino, A, Busse, (Busse, A, Butcher, (Butcher, D, Butler, (Butler, B, Bykov, (Bykov, I, Cahyna, (Cahyna, P, Calabro, (Calabro, G, 111, ), Calacci, (Calacci, L, 100, ), Callaghan, (Callaghan, D, (Callaghan, J, Calvo, (Calvo, I, Camenen, (Camenen, Y, 11, ), Camp, (Camp, P, Campling, (Campling, Dc, ( 8, D. C., Cannas, (Cannas, B, 23, ), Capat, (Capat, A, Carcangiu, (Carcangiu, S, Card, (Card, P, Cardinali, (Cardinali, A, Carman, (Carman, P, Carnevale, (Carnevale, D, Carr, (Carr, M, Carralero, (Carralero, D, Carraro, (Carraro, L, Carvalho, (Carvalho, Bb, ( 8, B. B., (Carvalho, I, (Carvalho, P, (Carvalho, Dd, ( 8, D. D., Casson, (Casson, Fj, ( 8, F. J., Castaldo, (Castaldo, C, Catarino, (Catarino, N, Causa, (Causa, F, Cavazzana, (Cavazzana, R, Cave-Ayland, (Cave-Ayland, K, Cavedon, (Cavedon, M, Cecconello, (Cecconello, M, Ceccuzzi, (Ceccuzzi, S, Cecil, (Cecil, E, Challis, (Challis, Cd, ( 8, C. D., Chandra, (Chandra, D, Chang, (Chang, Cs, ( 8, C. S., Chankin, (Chankin, A, Chapman, (Chapman, It, ( 8, I. T., (Chapman, B, 32, ), (Chapman, Sc, Chernyshova, (Chernyshova, M, 57, ), Chiariello, (Chiariello, A, Chitarin, (Chitarin, G, Chmielewski, (Chmielewski, P, Chone, (Chone, L, Ciraolo, 9, (Ciraolo, G, Ciric, (Ciric, D, Citrin, (Citrin, J, 41, ), Clairet, (Clairet, F, Clark, (Clark, M, (Clark, E, Clarkson, (Clarkson, R, Clay, (Clay, R, Clements, (Clements, C, Coad, (Coad, Jp, ( 8, J. P., Coates, (Coates, P, Cobalt, (Cobalt, A, Coccorese, (Coccorese, V, Cocilovo, (Cocilovo, V, Coelho, (Coelho, R, Coenen, (Coenen, Jw, ( 8, J. W., Coffey, (Coffey, I, Colas, (Colas, L, Colling, (Colling, B, Collins, (Collins, S, Conka, (Conka, D, Conroy, (Conroy, S, Conway, (Conway, N, Coombs, (Coombs, D, Cooper, (Cooper, Sr, ( 8, S. R., Corradino, (Corradino, C, Corre, (Corre, Y, Corrigan, (Corrigan, G, Coster, (Coster, D, Craciunescu, (Craciunescu, T, 93, ), Cramp, (Cramp, S, Crapper, (Crapper, C, Crisanti, (Crisanti, F, Croci, (Croci, G, Croft, (Croft, D, Crombe, (Crombe, K, 22, ), Cruz, (Cruz, N, Cseh, (Cseh, G, Cufar, (Cufar, A, 87, ), Cullen, (Cullen, A, Curson, (Curson, P, Curuia, (Curuia, M, Czarnecka, (Czarnecka, A, Czarski, (Czarski, T, Cziegler, (Cziegler, I, Dabirikhah, (Dabirikhah, H, Dal, Molin, A (Dal Molin, Dalgliesh, (Dalgliesh, P, Dalley, (Dalley, S, Dankowski, (Dankowski, J, Darrow, (Darrow, D, David, (David, P, Davies, (Davies, A, Davis, (Davis, W, Dawson, (Dawson, K, Day, (Day, I, (Day, C, 63, ), Bock, De, M (De Bock, Castro, De, A (de Castro, Dominici, De, G (De Dominici, de la Cal, E (de la Cal, de la Luna, E (de la Luna, Masi, De, G (De Masi, Temmerman, De, G (De Temmerman, Tommasi, De, G (De Tommasi, Vries, De, P (de Vries, Deane, (Deane, J, Dejarnac, (Dejarnac, R, Del, Sarto, D (Del Sarto, Delabie, (Delabie, E, Demerdzhiev, (Demerdzhiev, V, Dempsey, (Dempsey, A, 35, ), Den, Harder, N (den Harder, Dendy, (Dendy, Ro, ( 8, R. O., Denis, (Denis, J, Denner, (Denner, P, Devaux, (Devaux, S, Devynck, (Devynck, P, Maio, Di, F (Di Maio, Siena, Di, A (Di Siena, Troia, Di, C (Di Troia, Dickinson, (Dickinson, D, Dinca, (Dinca, P, Dittmar, (Dittmar, T, Dobrashian, (Dobrashian, J, Doerk, (Doerk, H, Doerner, (Doerner, Rp, ( 8, R. P., 16, ), Domptail, (Domptail, F, Donne, (Donne, T, Dorling, (Dorling, Se, ( 8, S. E., Douai, (Douai, D, Dowson, (Dowson, S, Drenik, (Drenik, A, Dreval, (Dreval, M, Drewelow, (Drewelow, P, Drews, (Drews, P, Duckworth, (Duckworth, P, Ph)(, 8, Dumont, (Dumont, R, Dumortier, (Dumortier, P, 65, ), Dunai, (Dunai, D, Dunne, (Dunne, M, Duran, (Duran, I, Durodie, (Durodie, F, Dutta, (Dutta, P, Duval, (Duval, Bp, ( 8, B. P., Dux, (Dux, R, Dylst, (Dylst, K, Edappala, (Edappala, Pv, Edwards, (Edwards, Am, ( 8, A. M., (Edwards, Js, ( 8, J. S., Eich, (Eich, T, Th)(, 8, Eidietis, (Eidietis, N, 47, ), Eksaeva, (Eksaeva, A, Ellis, (Ellis, R, Ellwood, (Ellwood, G, Elsmore, (Elsmore, C, Emery, (Emery, S, Enachescu, (Enachescu, M, 91, ), Ericsson, (Ericsson, G, Eriksson, (Eriksson, J, (Eriksson, F, 33, ), (Eriksson, Lg, ( 8, L. G., 39, ), Ertmer, (Ertmer, S, Esquembri, (Esquembri, S, 99, ), Esquisabel, (Esquisabel, Al, ( 8, A. L., Esser, (Esser, Hg, ( 8, H. G., Ewart, (Ewart, G, Fable, (Fable, E, Fagan, (Fagan, D, Faitsch, (Faitsch, M, Falie, (Falie, D, Fanni, (Fanni, A, Farahani, (Farahani, A, Fasoli, (Fasoli, A, Faugeras, (Faugeras, B, Fazinic, (Fazinic, S, 83, ), Felici, (Felici, F, Felton, (Felton, Rc, ( 8, R. C., Feng, (Feng, S, Fernades, (Fernades, A, Fernandes, (Fernandes, H, Ferreira, (Ferreira, J, (Ferreira, Dr, ( 8, D. R., Ferro, (Ferro, G, Fessey, (Fessey, Ja, ( 8, J. A., Ficker, (Ficker, O, Field, (Field, A, Fietz, (Fietz, S, Figini, (Figini, L, Figueiredo, (Figueiredo, J, (Figueiredo, A, Fil, (Fil, N, Finburg, (Finburg, P, Fischer, (Fischer, U, ( 8, U., Fittill, (Fittill, L, Fitzgerald, (Fitzgerald, M, Flammini, (Flammini, D, Flanagan, (Flanagan, J, Flinders, (Flinders, K, Foley, (Foley, S, Fonnesu, (Fonnesu, N, Fontdecaba, (Fontdecaba, Jm, ( 8, J. M., Formisano, (Formisano, A, Forsythe, (Forsythe, L, Fortuna, Luigi, (Fortuna, L, Fransson, (Fransson, E, Frasca, (Frasca, M, Frassinetti, (Frassinetti, L, Freisinger, (Freisinger, M, Fresa, (Fresa, R, Fridstrom, (Fridstrom, R, Frigione, (Frigione, D, Fuchs, (Fuchs, V, Fusco, (Fusco, V, Futatani, (Futatani, S, 101, ), Gal, (Gal, K, Galassi, (Galassi, D, 10, ), Galazka, (Galazka, K, Galeani, (Galeani, S, Gallart, (Gallart, D, 13, ), Galvao, (Galvao, R, 17, ), Gao, (Gao, Y, Garcia, (Garcia, J, Garcia-Carrasco, (Garcia-Carrasco, A, Garcia-Munoz, (Garcia-Munoz, M, 98, ), Gardener, (Gardener, M, Garzotti, (Garzotti, L, Gaspar, (Gaspar, J, Gaudio, (Gaudio, P, Gear, (Gear, D, Gebhart, (Gebhart, T, Gee, (Gee, S, Geiger, (Geiger, B, Gelfusa, (Gelfusa, M, George, (George, R, Gerasimov, (Gerasimov, S, Gervasini, (Gervasini, G, Gethins, (Gethins, M, Ghani, (Ghani, Z, ( 8, Z., Ghate, (Ghate, M, Gherendi, (Gherendi, M, Ghezzi, (Ghezzi, F, Giacalone, (Giacalone, Jc, ( 8, J. C., Giacomelli, (Giacomelli, L, Giacometti, (Giacometti, G, Gibson, (Gibson, K, Giegerich, (Giegerich, T, Gil, (Gil, L, Gilbert, (Gilbert, Mr, ( 8, M. R., Gin, (Gin, D, Giovannozzi, (Giovannozzi, E, Giroud, (Giroud, C, Gloggler, (Gloeggler, S, Goff, (Goff, J, Gohil, (Gohil, P, Goloborod'Ko, (Goloborod'ko, V, 107, ), Gomes, (Gomes, R, Goncalves, (Goncalves, B, Goniche, (Goniche, M, Goodyear, (Goodyear, A, Gorini, (Gorini, G, Gorler, (Goerler, T, Goulding, (Goulding, R, Goussarov, (Goussarov, A, Graham, (Graham, B, Graves, (Graves, Jp, Greuner, (Greuner, H, Grierson, (Grierson, B, Griffiths, (Griffiths, J, Griph, (Griph, S, Grist, (Grist, D, Groth, (Groth, M, Grove, 9, (Grove, R, Gruca, (Gruca, M, Guard, (Guard, D, Guerard, (Guerard, C, Guillemaut, (Guillemaut, C, Guirlet, (Guirlet, R, Gulati, (Gulati, S, Gurl, (Gurl, C, Gutierrez-Milla, (Gutierrez-Milla, A, Utoh, (Utoh, Hh, ( 8, H. H., Hackett, (Hackett, L, Hacquin, (Hacquin, S, Hager, (Hager, R, Hakola, (Hakola, A, Halitovs, (Halitovs, M, Hall, (Hall, S, Hallworth-Cook, (Hallworth-Cook, S, Ham, (Ham, C, Hamed, (Hamed, M, Hamilton, (Hamilton, N, Hamlyn-Harris, (Hamlyn-Harris, C, Hammond, (Hammond, K, Hancu, (Hancu, G, Harrison, (Harrison, J, Harting, (Harting, D, Hasenbeck, (Hasenbeck, F, Hatano, (Hatano, Y, 110, ), Hatch, (Hatch, Dr, Haupt, (Haupt, T, Hawes, (Hawes, J, Hawkes, (Hawkes, Nc, ( 8, N. C., Hawkins, (Hawkins, J, (Hawkins, P, Hazel, (Hazel, S, Heesterman, (Heesterman, P, Heinola, (Heinola, K, Hellesen, (Hellesen, C, Hellsten, (Hellsten, T, Helou, (Helou, W, Hemming, (Hemming, O, Hender, (Hender, Tc, ( 8, T. C., Henderson, (Henderson, Ss, ( 8, S. S., 25, ), (Henderson, M, Henriques, (Henriques, R, Hepple, (Hepple, D, Herfindal, (Herfindal, J, Hermon, (Hermon, G, Hidalgo, (Hidalgo, C, Higginson, (Higginson, W, Highcock, (Highcock, Eg, ( 8, E. G., Hillesheim, (Hillesheim, J, Hillis, (Hillis, D, Hizanidis, (Hizanidis, K, 74, ), Hjalmarsson, (Hjalmarsson, A, (Ho, A, Hobirk, (Hobirk, J, Hogben, Cha, (Hogben, ( 8, C. H. A., Hogeweij, Gmd, (Hogeweij, ( 8, G. M. D., Hollingsworth, (Hollingsworth, A, Hollis, (Hollis, S, Holzl, (Hoelzl, M, Honore, (Honore, Jj, J-J)(, 8, Hook, (Hook, M, Hopley, (Hopley, D, Horacek, (Horacek, J, Hornung, (Hornung, G, Horton, (Horton, A, (Horton, Ld, ( 8, L. D., Horvath, (Horvath, L, Hotchin, (Hotchin, Sp, ( 8, S. P., Howell, (Howell, R, Hubbard, (Hubbard, A, Huber, (Huber, A, (Huber, V, Huddleston, (Huddleston, Tm, ( 8, T. M., Hughes, (Hughes, M, (Hughes, J, Huijsmans, Gta, (Huijsmans, ( 8, G. T. A., Huynh, (Huynh, P, Hynes, (Hynes, A, Igaune, (Igaune, I, ( 8, I., Iglesias, (Iglesias, D, Imazawa, (Imazawa, N, Imrisek, (Imrisek, M, Incelli, (Incelli, M, Innocente, (Innocente, P, Ivanova-Stanik, (Ivanova-Stanik, I, Ivings, (Ivings, E, Jachmich, (Jachmich, S, Jackson, (Jackson, A, (Jackson, T, Jacquet, (Jacquet, P, Jansons, (Jansons, J, Jaulmes, (Jaulmes, F, Jednorog, (Jednorog, S, Jenkins, (Jenkins, I, Jepu, (Jepu, I, Johnson, (Johnson, T, (Johnson, R, Johnston, (Johnston, J, Joita, (Joita, L, Joly, (Joly, J, Jonasson, (Jonasson, E, Jones, (Jones, T, (Jones, C, (Jones, L, (Jones, G, (Jones, N, Juvonen, (Juvonen, M, Hoshino, (Hoshino, Kk, ( 8, K. K., Kallenbach, (Kallenbach, A, Kalsey, (Kalsey, M, Kaltiaisenaho, (Kaltiaisenaho, T, Kamiya, (Kamiya, K, Kaniewski, (Kaniewski, J, Kantor, (Kantor, A, Kappatou, (Kappatou, A, Karhunen, (Karhunen, J, Karkinsky, 9, (Karkinsky, D, Kaufman, (Kaufman, M, Kaveney, (Kaveney, G, Kazakov, (Kazakov, Y, Kazantzidis, (Kazantzidis, V, Keeling, (Keeling, Dl, ( 8, D. L., Keenan, (Keenan, Fp, ( 8, F. P., Kempenaars, (Kempenaars, M, Kent, (Kent, O, (Kent, J, Keogh, (Keogh, K, Khilkevich, (Khilkevich, E, Kim, (Kim, Ht, H-T)(, 8, ( 8, H. T., King, (King, R, (King, D, Kinna, (Kinna, Dj, ( 8, D. J., Kiptily, (Kiptily, V, Kirk, (Kirk, A, Kirov, (Kirov, K, Kirschner, (Kirschner, A, Kizane, (Kizane, G, Klas, (Klas, M, Klepper, (Klepper, C, Klix, (Klix, A, Knight, (Knight, M, (Knight, P, Knipe, (Knipe, S, Knott, (Knott, S, 103, ), Kobuchi, (Kobuchi, T, Kochl, (Kochl, F, 90, ), Kocsis, (Kocsis, G, Kodeli, (Kodeli, I, Koechl, (Koechl, F, Kogut, (Kogut, D, Koivuranta, (Koivuranta, S, Kolesnichenko, (Kolesnichenko, Y, Kollo, (Kollo, Z, Kominis, (Kominis, Y, Koppen, (Koeppen, M, Korolczuk, (Korolczuk, S, Kos, (Kos, B, Koslowski, (Koslowski, Hr, ( 8, H. R., Kotschenreuther, (Kotschenreuther, M, Koubiti, (Koubiti, M, Kovaldins, (Kovaldins, R, Kovanda, (Kovanda, O, Kowalska-Strzeciwilk, (Kowalska-Strzeciwilk, E, Krasilnikov, (Krasilnikov, A, (Krasilnikov, V, Krawczyk, (Krawczyk, N, Kresina, (Kresina, M, Krieger, (Krieger, K, Krivska, (Krivska, A, Kruezi, (Kruezi, U, Ksiazek, (Ksiazek, I, 56, ), Kukushkin, (Kukushkin, A, Kundu, (Kundu, A, Kurki-Suonio, (Kurki-Suonio, T, Kwak, 9, (Kwak, S, Kwon, (Kwon, Oj, ( 8, O. J., 20, ), Laguardia, (Laguardia, L, Lahtinen, (Lahtinen, A, Laing, (Laing, A, Lalousis, (Lalousis, P, 43, ), Lam, (Lam, N, Lamb, (Lamb, C, Lambertz, (Lambertz, Ht, Lang, (Lang, Pt, ( 8, P. T., Lanthaler, (Lanthaler, S, Neto, (Neto, El, Lascas)( 8, E., Laszynska, (Laszynska, E, Lawless, (Lawless, R, Lawson, (Lawson, Kd, ( 8, K. D., Lazaros, (Lazaros, A, Lazzaro, (Lazzaro, E, Leach, (Leach, R, Learoyd, (Learoyd, G, Leerink, (Leerink, S, Lefebvre, 9, (Lefebvre, X, Leggate, (Leggate, Hj, ( 8, H. J., Lehmann, (Lehmann, J, Lehnen, (Lehnen, M, Leichauer, (Leichauer, P, Leichtle, (Leichtle, D, Leipold, (Leipold, F, Lengar, (Lengar, I, Lennholm, (Lennholm, M, Lepiavko, (Lepiavko, B, Leppanen, (Leppanen, J, Lerche, (Lerche, E, Lescinskis, (Lescinskis, A, (Lescinskis, B, Lesnoj, (Lesnoj, S, Leyland, (Leyland, M, Leysen, (Leysen, W, (Li, Y, (Li, L, Liang, (Liang, Y, Likonen, (Likonen, J, Linke, (Linke, J, Linsmeier, (Linsmeier, C, Ch)(, 8, Lipschultz, (Lipschultz, B, Litaudon, (Litaudon, X, Liu, (Liu, G, Lloyd, (Lloyd, B, Schiavo, Lo, VP (Lo Schiavo, ( 8, V. P., Loarer, (Loarer, T, Loarte, (Loarte, A, Lomanowski, (Lomanowski, B, Lomas, 9, (Lomas, Pj, ( 8, P. J., Lonnroth, (Lonnroth, J, 9, Lopez, (Lopez, Jm, Lorenzini, (Lorenzini, R, Losada, (Losada, U, Loughlin, (Loughlin, M, Lowry, (Lowry, C, Luce, (Luce, T, Lucock, (Lucock, R, Lukin, (Lukin, A, 78, ), Luna, (Luna, C, 12, ), Lungaroni, (Lungaroni, M, Lungu, (Lungu, Cp, ( 8, C. P., (Lungu, M, Lunniss, (Lunniss, A, Lunt, (Lunt, T, Lupelli, (Lupelli, I, Lutsenko, (Lutsenko, V, Lyssoivan, (Lyssoivan, A, Macheta, (Macheta, P, Macusova, (Macusova, E, Magesh, (Magesh, B, Maggi, (Maggi, C, Maggiora, (Maggiora, R, 79, ), Mahesan, (Mahesan, S, Maier, (Maier, H, Mailloux, (Mailloux, J, Maingi, (Maingi, R, Makwana, (Makwana, R, Malaquias, (Malaquias, A, Malinowski, (Malinowski, K, Malizia, (Malizia, A, Manas, (Manas, P, Manduchi, (Manduchi, G, Manso, (Manso, Me, ( 8, M. E., Mantica, (Mantica, P, Mantsinen, (Mantsinen, M, 49, ), Manzanares, (Manzanares, A, 97, ), Maquet, (Maquet, P, Marandet, (Marandet, Y, Marcenko, (Marcenko, N, Marchetto, (Marchetto, C, Marchuk, (Marchuk, O, Marconato, (Marconato, N, Mariani, (Mariani, A, Marin, (Marin, M, Marinelli, (Marinelli, M, Marinucci, (Marinucci, M, Markovic, (Markovic, T, Marocco, (Marocco, D, Marot, (Marot, L, 30, ), Marsh, (Marsh, J, Martin, (Martin, A, Aguilera, De, AM (Martin de Aguilera, Martin-Solis, (Martin-Solis, Jr, ( 8, J. R., 21, ), Martone, (Martone, R, Martynova, (Martynova, Y, Maruyama, (Maruyama, S, Maslov, (Maslov, M, Matejcik, (Matejcik, S, Mattei, (Mattei, M, Matthews, (Matthews, Gf, ( 8, G. F., Matveev, (Matveev, D, Matveeva, (Matveeva, E, Mauriya, (Mauriya, A, Maviglia, (Maviglia, F, May-Smith, (May-Smith, T, Mayer, (Mayer, M, Mayoral, (Mayoral, Ml, ( 8, M. L., Mazon, (Mazon, D, Mazzotta, (Mazzotta, C, Mcadams, (McAdams, R, Mccarthy, (McCarthy, Pj, Mcclements, (McClements, Kg, ( 8, K. G., Mccormack, (McCormack, O, Mccullen, (McCullen, Pa, ( 8, P. A., Mcdonald, (McDonald, D, Mchardy, (McHardy, M, Mckean, (McKean, R, Mckehon, (McKehon, J, Mcnamee, (McNamee, L, Meadowcroft, (Meadowcroft, C, Meakins, (Meakins, A, Medley, (Medley, S, Meigh, (Meigh, S, Meigs, (Meigs, Ag, ( 8, A. G., Meisl, (Meisl, G, Meiter, (Meiter, S, Meitner, (Meitner, S, Meneses, (Meneses, L, Menmuir, (Menmuir, S, Mergia, (Mergia, K, Merle, (Merle, A, Merriman, (Merriman, P, Mertens, (Mertens, P, Meshchaninov, (Meshchaninov, S, Messiaen, (Messiaen, A, Meyer, (Meyer, H, Michling, (Michling, R, Milanesio, (Milanesio, D, Militello, (Militello, F, Militello-Asp, (Militello-Asp, E, Milocco, (Milocco, A, Miloshevsky, (Miloshevsky, G, 81, ), Mink, (Mink, F, Minucci, (Minucci, S, Miron, (Miron, I, Mistry, (Mistry, S, Miyoshi, (Miyoshi, Y, Mlynar, (Mlynar, J, Moiseenko, (Moiseenko, V, Monaghan, (Monaghan, P, Monakhov, (Monakhov, I, Moon, (Moon, S, Mooney, (Mooney, R, Moradi, (Moradi, S, 40, ), Morales, (Morales, J, Moran, (Moran, J, Mordijck, (Mordijck, S, Moreira, (Moreira, L, Moro, (Moro, F, Morris, (Morris, J, Moser, (Moser, L, Mosher, (Mosher, S, Moulton, (Moulton, D, Mrowetz, (Mrowetz, T, Muir, (Muir, A, Muraglia, (Muraglia, M, Murari, (Murari, A, Muraro, (Muraro, A, Murphy, (Murphy, S, Muscat, (Muscat, P, Muthusonai, (Muthusonai, N, Myers, (Myers, C, Asakura, (Asakura, Nn, ( 8, N. N., N'Konga, (N'Konga, B, Nabais, (Nabais, F, Naish, (Naish, R, (Naish, J, Nakano, (Nakano, T, Napoli, (Napoli, F, Nardon, (Nardon, E, Naulin, (Naulin, V, 89, ), Nave, Mff, (Nave, ( 8, M. F. F., Nedzelskiy, (Nedzelskiy, I, Nemtsev, (Nemtsev, G, Nesenevich, (Nesenevich, V, Nespoli, (Nespoli, F, (Neto, A, Neu, (Neu, R, Neverov, (Neverov, Vs, ( 8, V. S., Newman, (Newman, M, (Ng, S, Nicassio, (Nicassio, M, Nielsen, (Nielsen, Ah, ( 8, A. H., Nina, (Nina, D, Nishijima, (Nishijima, D, 105, ), Noble, (Noble, C, Nobs, (Nobs, Cr, ( 8, C. R., Nocente, (Nocente, M, Nodwell, (Nodwell, D, Nordlund, (Nordlund, K, Nordman, (Nordman, H, Normanton, (Normanton, R, Noterdaeme, (Noterdaeme, Jm, Nowak, (Nowak, S, Nunes, (Nunes, I, O'Gorman, (O'Gorman, T, O'Mullane, (O'Mullane, M, 27, ), Oberkofler, (Oberkofler, M, Oberparleiter, (Oberparleiter, M, Odupitan, (Odupitan, T, Ogawa, (Ogawa, Mt, ( 8, M. T., Okabayashi, (Okabayashi, M, Oliver, (Oliver, H, Olney, (Olney, R, Omoregie, (Omoregie, L, Ongena, (Ongena, J, Orsitto, (Orsitto, F, Orszagh, (Orszagh, J, Osborne, (Osborne, T, Otin, (Otin, R, Owen, (Owen, A, (Owen, T, Paccagnella, (Paccagnella, R, Packer, (Packer, Lw, ( 8, L. W., Pajuste, (Pajuste, E, Pamela, (Pamela, S, Panja, (Panja, S, Papp, (Papp, P, (Papp, G, Parail, (Parail, V, Pardanaud, (Pardanaud, C, Diaz, (Diaz, Fp, Parra)( 8, F., Parsloe, (Parsloe, A, Parsons, (Parsons, N, (Parsons, M, Pasqualotto, (Pasqualotto, R, Passeri, (Passeri, M, Patel, (Patel, A, Pathak, (Pathak, S, Patten, (Patten, H, Pau, (Pau, A, Pautasso, (Pautasso, G, Pavlichenko, (Pavlichenko, R, Pavone, (Pavone, A, Pawelec, (Pawelec, E, Soldan, (Soldan, Cp, Paz)( 8, C., Peackoc, (Peackoc, A, Pehkonen, (Pehkonen, Sp, S-P)(, 8, Peluso, (Peluso, E, Penot, (Penot, C, Penzo, (Penzo, J, Pepperell, (Pepperell, K, Pereira, (Pereira, R, Cippo, (Cippo, Ep, Perelli)( 8, E., Von, Thun, CP (von Thun, Perez)( 8, C., Pericoli, (Pericoli, V, Peruzzo, (Peruzzo, S, Peterka, (Peterka, M, Petersson, (Petersson, P, Petravich, (Petravich, G, Petre, (Petre, A, Petrzilka, (Petrzilka, V, Philipps, (Philipps, V, Pigatto, (Pigatto, L, Pillon, (Pillon, M, Pinches, (Pinches, S, Pintsuk, (Pintsuk, G, Piovesan, (Piovesan, P, De, Sa, WP (de Sa, Pires)( 8, W., 59, ), Dos, Reis, AP (dos Reis, Pires)( 8, A., Piron, (Piron, L, (Piron, C, Pironti, (Pironti, A, Pisano, (Pisano, F, Pitts, (Pitts, R, Plyusnin, (Plyusnin, V, Poli, (Poli, Fm, ( 8, F. M., Pomaro, (Pomaro, N, Pompilian, (Pompilian, Og, ( 8, O. G., Pool, (Pool, P, Popovichev, (Popovichev, S, Poradzinski, (Poradzinski, M, Porfiri, (Porfiri, Mt, Porosnicu, (Porosnicu, C, Porton, (Porton, M, Possnert, (Possnert, G, Potzel, (Potzel, S, Poulipoulis, (Poulipoulis, G, 108, ), Powell, (Powell, T, Prajapati, (Prajapati, V, Prakash, (Prakash, R, Predebon, (Predebon, I, Prestopino, (Prestopino, G, Price, (Price, D, (Price, M, (Price, R, Primetzhofer, (Primetzhofer, D, Prior, (Prior, P, Pucella, (Pucella, G, Puglia, (Puglia, P, Puiatti, (Puiatti, Me, Purahoo, (Purahoo, K, Pusztai, (Pusztai, I, Putterich, (Puetterich, T, Rachlew, (Rachlew, E, 29, ), Rack, (Rack, M, Ragona, (Ragona, R, Rainford, (Rainford, M, Raj, (Raj, P, Rakha, (Rakha, A, Ramogida, (Ramogida, G, Ranjan, (Ranjan, S, Rapson, (Rapson, Cj, ( 8, C. J., Rasmussen, (Rasmussen, D, (Rasmussen, Jj, ( 8, J. J., Rathod, (Rathod, K, Ratta, (Ratta, G, Ratynskaia, (Ratynskaia, S, 88, ), Ravera, (Ravera, G, Rebai, (Rebai, M, Reed, (Reed, A, Refy, (Refy, D, Regana, (Regana, J, Reich, (Reich, M, Reid, (Reid, N, Reimold, (Reimold, F, Reinhart, (Reinhart, M, Reinke, (Reinke, M, Reiser, (Reiser, D, Rendell, (Rendell, D, Reux, (Reux, C, Cortes, Sdar, (Cortes, Reyes)( 8, S. D. A., Reynolds, (Reynolds, S, Ricci, (Ricci, D, Richiusa, (Richiusa, M, Rigamonti, (Rigamonti, D, Rimini, (Rimini, Fg, ( 8, F. G., Risner, (Risner, J, Riva, (Riva, M, Rivero-Rodriguez, (Rivero-Rodriguez, J, Roach, (Roach, C, Robins, (Robins, R, Robinson, (Robinson, S, Robson, (Robson, D, Rodionov, (Rodionov, R, Rodrigues, (Rodrigues, P, Rodriguez, (Rodriguez, J, Rohde, (Rohde, V, Romanelli, (Romanelli, M, (Romanelli, F, (Romanelli, S, Romazanov, (Romazanov, J, Rowe, (Rowe, S, Rubel, (Rubel, M, Rubinacci, (Rubinacci, G, Rubino, (Rubino, G, Ruchko, (Ruchko, L, Ruset, (Ruset, C, Rzadkiewicz, (Rzadkiewicz, J, Saarelma, (Saarelma, S, Sabot, (Sabot, R, Saez, (Saez, X, Safi, (Safi, E, Sahlberg, (Sahlberg, A, Saibene, (Saibene, G, Saleem, (Saleem, M, Salewski, (Salewski, M, Salmi, (Salmi, A, Salmon, (Salmon, R, Salzedas, (Salzedas, F, Samm, (Samm, U, Sandiford, (Sandiford, D, Santa, (Santa, P, Santala, Mik, (Santala, ( 8, M. I. K., Santos, 9, (Santos, B, Santucci, (Santucci, A, Sartori, (Sartori, F, (Sartori, R, Sauter, (Sauter, O, Scannell, (Scannell, R, Schluck, (Schluck, F, Schlummer, (Schlummer, T, Schmid, (Schmid, K, Schmuck, (Schmuck, S, Schopf, (Schoepf, K, Schweinzer, (Schweinzer, J, Schworer, (Schworer, D, Scott, (Scott, Sd, ( 8, S. D., Sergienko, (Sergienko, G, Sertoli, (Sertoli, M, Shabbir, (Shabbir, A, Sharapov, (Sharapov, Se, Shaw, (Shaw, A, Sheikh, (Sheikh, H, Shepherd, (Shepherd, A, Shevelev, (Shevelev, A, Shiraki, (Shiraki, D, Shumack, (Shumack, A, Sias, (Sias, G, Sibbald, (Sibbald, M, Sieglin, (Sieglin, B, Silburn, (Silburn, S, Silva, (Silva, J, (Silva, A, (Silva, C, Silvagni, (Silvagni, D, Simmons, (Simmons, P, Simpson, (Simpson, J, Sinha, (Sinha, A, Sipila, (Sipila, Sk, ( 8, S. K., Sips, 9, Acc, (Sips, ( 8, A. C. C., Siren, (Siren, P, Sirinelli, (Sirinelli, A, Sjostrand, (Sjostrand, H, Skiba, (Skiba, M, Skilton, (Skilton, R, Skvara, (Skvara, V, Slade, (Slade, B, Smith, (Smith, R, (Smith, P, (Smith, Sf, ( 8, S. F., Snoj, (Snoj, L, Soare, (Soare, S, Solano, (Solano, Er, ( 8, E. R., Somers, (Somers, A, Sommariva, (Sommariva, C, Sonato, (Sonato, P, Sos, (Sos, M, Sousa, (Sousa, J, Sozzi, (Sozzi, C, Spagnolo, (Spagnolo, S, Sparapani, (Sparapani, P, Spelzini, (Spelzini, T, Spineanu, (Spineanu, F, Sprada, (Sprada, D, Sridhar, (Sridhar, S, Stables, (Stables, G, Stallard, (Stallard, J, Stamatelatos, (Stamatelatos, I, Stamp, (Stamp, Mf, ( 8, M. F., Stan-Sion, (Stan-Sion, C, Stancar, (Stancar, Z, Staniec, (Staniec, P, Stankunas, (Stankunas, G, 66, ), Stano, (Stano, M, Stavrou, (Stavrou, C, Stefanikova, 9, (Stefanikova, E, Stepanov, (Stepanov, I, Stephen, (Stephen, Av, (Stephen, M, Stephens, (Stephens, J, Stevens, (Stevens, B, Stober, (Stober, J, Stokes, (Stokes, C, 31, ), Strachan, (Strachan, J, Strand, (Strand, P, Strauss, (Strauss, Hr, 48, ), Strom, (Strom, P, Studholme, (Studholme, W, Subba, (Subba, F, Suchkov, (Suchkov, E, Summers, (Summers, Hp, ( 8, H. P., Sun, (Sun, H, Sutton, (Sutton, N, Svensson, (Svensson, J, Sytnykov, (Sytnykov, D, Szabolics, (Szabolics, T, Szepesi, (Szepesi, G, Suzuki, (Suzuki, Tt, ( 8, T. T., Tabares, (Tabares, F, Tadic, (Tadic, T, Tal, (Tal, B, Tala, (Tala, T, Taliercio, (Taliercio, C, Tallargio, (Tallargio, A, Tanaka, (Tanaka, K, ( 8 ), K., Tang, (Tang, W, Tardocchi, (Tardocchi, M, Tatali, (Tatali, R, Taylor, (Taylor, D, Tegnered, (Tegnered, D, Telesca, (Telesca, G, Teplova, (Teplova, N, Teplukhina, (Teplukhina, A, Terranova, (Terranova, D, Terry, (Terry, C, Testa, (Testa, D, Tholerus, (Tholerus, E, Thomas, (Thomas, J, Thompson, (Thompson, Vk, Thornton, (Thornton, A, Tierens, (Tierens, W, Tiseanu, (Tiseanu, I, Tojo, (Tojo, H, Tokitani, (Tokitani, M, 72, ), Tolias, (Tolias, P, Tomes, (Tomes, M, Trimble, (Trimble, P, Tripsky, (Tripsky, M, Tsalas, (Tsalas, M, Tsavalas, (Tsavalas, P, Tskhakaya, (Tskhakaya, D, Jun, (Jun, Dt, Tskhakaya)( 8, D., Turner, (Turner, I, (Turner, Mm, ( 8, M. M., Turnyanskiy, (Turnyanskiy, M, Tvalashvili, (Tvalashvili, G, Tyshchenko, (Tyshchenko, M, Uccello, (Uccello, A, Uljanovs, (Uljanovs, J, Urano, 9, (Urano, H, Urban, (Urban, A, Urbanczyk, (Urbanczyk, G, Uytdenhouwen, (Uytdenhouwen, I, Vadgama, (Vadgama, A, Valcarcel, (Valcarcel, D, Vale, (Vale, R, Valentinuzzi, (Valentinuzzi, M, Valerii, (Valerii, K, Valisa, (Valisa, M, Olivares, (Olivares, Pv, Vallejos)( 8, P., Valovic, (Valovic, M, Van, Eester, D (Van Eester, Van, Renterghem, W (Van Renterghem, Van, Rooij, GJ (van Rooij, ( 8, G. J., Varje, (Varje, J, Vartanian, 9, (Vartanian, S, Vasava, (Vasava, K, Vasilopoulou, (Vasilopoulou, T, Vecsei, (Vecsei, M, Vega, (Vega, J, Ventre, (Ventre, S, Verdoolaege, (Verdoolaege, G, Verona, (Verona, C, Rinati, (Rinati, Gv, Verona)( 8, G., Veshchev, (Veshchev, E, Vianello, (Vianello, N, Vicente, (Vicente, J, Viezzer, (Viezzer, E, Villari, (Villari, S, Villone, (Villone, F, Vincent, (Vincent, M, Vincenzi, (Vincenzi, P, Vinyar, (Vinyar, I, Viola, (Viola, B, Vitins, (Vitins, A, Vizvary, (Vizvary, Z, Vlad, (Vlad, M, Voitsekhovitch, (Voitsekhovitch, I, Voltolina, (Voltolina, D, Von, Toussaint, U (von Toussaint, Vondracek, (Vondracek, P, Vuksic, (Vuksic, M, Wakeling, (Wakeling, B, Waldon, (Waldon, C, Walkden, (Walkden, N, Walker, (Walker, R, (Walker, M, Walsh, (Walsh, M, Wang, (Wang, N, (Wang, E, Warder, (Warder, S, Warren, (Warren, R, Waterhouse, (Waterhouse, J, Watts, (Watts, C, Wauters, (Wauters, T, Webb, (Webb, M, Weckmann, (Weckmann, A, Weiland, (Weiland, J, (Weiland, M, Weisen, (Weisen, H, Weiszflog, (Weiszflog, M, Welch, (Welch, P, West, (West, A, Wheatley, (Wheatley, M, Wheeler, (Wheeler, S, Whitehead, (Whitehead, Am, Whittaker, (Whittaker, D, Widdowson, (Widdowson, Am, Wiesen, (Wiesen, S, Wilkie, (Wilkie, G, Williams, (Williams, J, Willoughby, (Willoughby, D, Wilson, (Wilson, J, (Wilson, I, (Wilson, Hr, Wischmeier, (Wischmeier, M, Withycombe, (Withycombe, A, Witts, (Witts, D, Wolfrum, (Wolfrum, E, Wood, (Wood, R, Woodley, (Woodley, R, (Woodley, C, Wray, (Wray, S, Wright, (Wright, Jc, (Wright, P, Wukitch, (Wukitch, S, Wynn, (Wynn, A, Xiang, (Xiang, L, (Xu, T, Xue, (Xue, Y, Yadikin, (Yadikin, D, Yakovenko, (Yakovenko, Y, Yanling, (Yanling, W, Yavorskij, (Yavorskij, V, Young, (Young, I, (Young, R, (Young, D, Zacks, (Zacks, J, Zagorski, (Zagorski, R, Zaitsev, (Zaitsev, Fs, ( 8, F. S., Zakharov, (Zakharov, L, Zanino, (Zanino, R, Zarins, (Zarins, A, (Zarins, R, Fernandez, (Fernandez, Dz, Zarzoso)( 8, D., Zastrow, (Zastrow, Kd, Zerbini, (Zerbini, M, Zhang, (Zhang, W, Zhou, (Zhou, Y, Zilli, (Zilli, E, Zocco, (Zocco, A, Zoita, (Zoita, V, Zoletnik, (Zoletnik, S, Zwingmann, (Zwingmann, W, Zychor, (Zychor, I, 71), Science and Technology of Nuclear Fusion, Garcia, J, Dumont, R, Joly, J, Morales, J, Garzotti, L, Bache, T, Baranov, Y, Casson, F, Challis, C, Kirov, K, Mailloux, J, Saarelma, S, Nocente, M, Banon-Navarro, A, Goerler, T, Citrin, J, Ho, A, Gallart, D, Mantsinen, M, Mariani, A, Garcia, J., Dumont, R. J., Joly, J., Morales, J., Garzotti, L., Bache, T. W., Baranov, Y., Casson, F. J., Challis, C., Kirov, K., Mailloux, J., Saarelma, S., Nocente, M., Banon-Navarro, A., Goerler, T., Citrin, J., Ho, A., Gallart, D., Formisano, A., Mantsinen, M., Dumont, Rj, Bache, Tw, Casson, Fj, Abduallev, S, Abhangi, M, Abreu, P, Afanasev, V, Afzal, M, Aggarwal, Km, Ahlgren, T, Aho-Mantila, L, Aiba, N, Airila, M, Alarcon, T, Albanese, R, Alegre, D, Aleiferis, S, Alessi, E, Aleynikov, P, Alkseev, A, Allinson, M, Alper, B, Alves, E, Ambrosino, G, Ambrosino, R, Amosov, V, Sunden, Ea, Andrews, R, Angelone, M, Anghel, M, Angioni, C, Appel, L, Appelbee, C, Arena, P, Ariola, M, Arshad, S, Artaud, J, Arter, W, Ash, A, Ashikawa, N, Aslanyan, V, Asunta, O, Asztalos, O, Auriemma, F, Austin, Y, Avotina, L, Axton, M, Ayres, C, Baciero, A, Baiao, D, Balboa, I, Balden, M, Balshaw, N, Bandaru, Vk, Banks, J, Baranov, Yf, Barcellona, C, Barnard, T, Barnes, M, Barnsley, R, Wiechec, Ab, Orte, Lb, Baruzzo, M, Basiuk, V, Bassan, M, Bastow, R, Batista, A, Batistoni, P, Baumane, L, Bauvir, B, Baylor, L, Beaumont, P, Beckers, M, Beckett, B, Bekris, N, Beldishevski, M, Bell, K, Belli, F, Belonohy, E, Benayas, J, Bergsaker, H, Bernardo, J, Bernert, M, Berry, M, Bertalot, L, Besiliu, C, Betar, H, Beurskens, M, Bielecki, J, Biewer, T, Bilato, R, Biletskyi, O, Bilkova, P, Binda, F, Birkenmeier, G, Bizarro, Jp, Bjorkas, C, Blackburn, J, Blackman, Tr, Blanchard, P, Blatchford, P, Bobkov, V, Boboc, A, Bogar, O, Bohm, P, Bohm, T, Bolshakova, I, Bolzonella, T, Bonanomi, N, Boncagni, L, Bonfiglio, D, Bonnin, X, Boom, J, Borba, D, Borodin, D, Borodkina, I, Boulbe, C, Bourdelle, C, Bowden, M, Bowman, C, Boyce, T, Boyer, H, Bradnam, Sc, Braic, V, Bravanec, R, Breizman, B, Brennan, D, Breton, S, Brett, A, Brezinsek, S, Bright, M, Brix, M, Broeckx, W, Brombin, M, Broslawski, A, Brown, B, Brunetti, D, Bruno, E, Buch, J, Buchanan, J, Buckingham, R, Buckley, M, Bucolo, M, Budny, R, Bufferand, H, Buller, S, Bunting, P, Buratti, P, Burckhart, A, Burroughes, G, Buscarino, A, Busse, A, Butcher, D, Butler, B, Bykov, I, Cahyna, P, Calabro, G, Calacci, L, Callaghan, D, Callaghan, J, Calvo, I, Camenen, Y, Camp, P, Campling, Dc, Cannas, B, Capat, A, Carcangiu, S, Card, P, Cardinali, A, Carman, P, Carnevale, D, Carr, M, Carralero, D, Carraro, L, Carvalho, Bb, Carvalho, I, Carvalho, P, Carvalho, Dd, Castaldo, C, Catarino, N, Causa, F, Cavazzana, R, Cave-Ayland, K, Cavedon, M, Cecconello, M, Ceccuzzi, S, Cecil, E, Challis, Cd, Chandra, D, Chang, C, Chankin, A, Chapman, It, Chapman, B, Chapman, Sc, Chernyshova, M, Chiariello, A, Chitarin, G, Chmielewski, P, Chone, L, Ciraolo, G, Ciric, D, Clairet, F, Clark, M, Clark, E, Clarkson, R, Clay, R, Clements, C, Coad, Jp, Coates, P, Cobalt, A, Coccorese, V, Cocilovo, V, Coelho, R, Coenen, Jw, Coffey, I, Colas, L, Colling, B, Collins, S, Conka, D, Conroy, S, Conway, N, Coombs, D, Cooper, Sr, Corradino, C, Corre, Y, Corrigan, G, Coster, D, Craciunescu, T, Cramp, S, Crapper, C, Crisanti, F, Croci, G, Croft, D, Crombe, K, Cruz, N, Cseh, G, Cufar, A, Cullen, A, Curson, P, Curuia, M, Czarnecka, A, Czarski, T, Cziegler, I, Dabirikhah, H, Dal Molin, A, Dalgliesh, P, Dalley, S, Dankowski, J, Darrow, D, David, P, Davies, A, Davis, W, Dawson, K, Day, I, Day, C, De Bock, M, de Castro, A, De Dominici, G, de la Cal, E, de la Luna, E, De Masi, G, De Temmerman, G, De Tommasi, G, de Vries, P, Deane, J, Dejarnac, R, Del Sarto, D, Delabie, E, Demerdzhiev, V, Dempsey, A, den Harder, N, Dendy, Ro, Denis, J, Denner, P, Devaux, S, Devynck, P, Di Maio, F, Di Siena, A, Di Troia, C, Dickinson, D, Dinca, P, Dittmar, T, Dobrashian, J, Doerk, H, Doerner, Rp, Domptail, F, Donne, T, Dorling, Se, Douai, D, Dowson, S, Drenik, A, Dreval, M, Drewelow, P, Drews, P, Duckworth, P, Dumortier, P, Dunai, D, Dunne, M, Duran, I, Durodie, F, Dutta, P, Duval, Bp, Dux, R, Dylst, K, Edappala, Pv, Edwards, Am, Edwards, J, Eich, T, Eidietis, N, Eksaeva, A, Ellis, R, Ellwood, G, Elsmore, C, Emery, S, Enachescu, M, Ericsson, G, Eriksson, J, Eriksson, F, Eriksson, Lg, Ertmer, S, Esquembri, S, Esquisabel, Al, Esser, Hg, Ewart, G, Fable, E, Fagan, D, Faitsch, M, Falie, D, Fanni, A, Farahani, A, Fasoli, A, Faugeras, B, Fazinic, S, Felici, F, Felton, Rc, Feng, S, Fernades, A, Fernandes, H, Ferreira, J, Ferreira, Dr, Ferro, G, Fessey, Ja, Ficker, O, Field, A, Fietz, S, Figini, L, Figueiredo, J, Figueiredo, A, Fil, N, Finburg, P, Fischer, U, Fittill, L, Fitzgerald, M, Flammini, D, Flanagan, J, Flinders, K, Foley, S, Fonnesu, N, Fontdecaba, Jm, Formisano, A, Forsythe, L, Fortuna, L, Fransson, E, Frasca, M, Frassinetti, L, Freisinger, M, Fresa, R, Fridstrom, R, Frigione, D, Fuchs, V, Fusco, V, Futatani, S, Gal, K, Galassi, D, Galazka, K, Galeani, S, Galvao, R, Gao, Y, Garcia-Carrasco, A, Garcia-Munoz, M, Gardener, M, Gaspar, J, Gaudio, P, Gear, D, Gebhart, T, Gee, S, Geiger, B, Gelfusa, M, George, R, Gerasimov, S, Gervasini, G, Gethins, M, Ghani, Z, Ghate, M, Gherendi, M, Ghezzi, F, Giacalone, Jc, Giacomelli, L, Giacometti, G, Gibson, K, Giegerich, T, Gil, L, Gilbert, Mr, Gin, D, Giovannozzi, E, Giroud, C, Gloggler, S, Goff, J, Gohil, P, Goloborod'Ko, V, Gomes, R, Goncalves, B, Goniche, M, Goodyear, A, Gorini, G, Gorler, T, Goulding, R, Goussarov, A, Graham, B, Graves, Jp, Greuner, H, Grierson, B, Griffiths, J, Griph, S, Grist, D, Groth, M, Grove, R, Gruca, M, Guard, D, Guerard, C, Guillemaut, C, Guirlet, R, Gulati, S, Gurl, C, Gutierrez-Milla, A, Utoh, Hh, Hackett, L, Hacquin, S, Hager, R, Hakola, A, Halitovs, M, Hall, S, Hallworth-Cook, S, Ham, C, Hamed, M, Hamilton, N, Hamlyn-Harris, C, Hammond, K, Hancu, G, Harrison, J, Harting, D, Hasenbeck, F, Hatano, Y, Hatch, Dr, Haupt, T, Hawes, J, Hawkes, Nc, Hawkins, J, Hawkins, P, Hazel, S, Heesterman, P, Heinola, K, Hellesen, C, Hellsten, T, Helou, W, Hemming, O, Hender, Tc, Henderson, S, Henderson, M, Henriques, R, Hepple, D, Herfindal, J, Hermon, G, Hidalgo, C, Higginson, W, Highcock, Eg, Hillesheim, J, Hillis, D, Hizanidis, K, Hjalmarsson, A, Hobirk, J, Hogben, Cha, Hogeweij, Gmd, Hollingsworth, A, Hollis, S, Holzl, M, Honore, Jj, Hook, M, Hopley, D, Horacek, J, Hornung, G, Horton, A, Horton, Ld, Horvath, L, Hotchin, Sp, Howell, R, Hubbard, A, Huber, A, Huber, V, Huddleston, Tm, Hughes, M, Hughes, J, Huijsmans, Gta, Huynh, P, Hynes, A, Igaune, I, Iglesias, D, Imazawa, N, Imrisek, M, Incelli, M, Innocente, P, Ivanova-Stanik, I, Ivings, E, Jachmich, S, Jackson, A, Jackson, T, Jacquet, P, Jansons, J, Jaulmes, F, Jednorog, S, Jenkins, I, Jepu, I, Johnson, T, Johnson, R, Johnston, J, Joita, L, Jonasson, E, Jones, T, Jones, C, Jones, L, Jones, G, Jones, N, Juvonen, M, Hoshino, Kk, Kallenbach, A, Kalsey, M, Kaltiaisenaho, T, Kamiya, K, Kaniewski, J, Kantor, A, Kappatou, A, Karhunen, J, Karkinsky, D, Kaufman, M, Kaveney, G, Kazakov, Y, Kazantzidis, V, Keeling, Dl, Keenan, Fp, Kempenaars, M, Kent, O, Kent, J, Keogh, K, Khilkevich, E, Kim, Ht, King, R, King, D, Kinna, Dj, Kiptily, V, Kirk, A, Kirschner, A, Kizane, G, Klas, M, Klepper, C, Klix, A, Knight, M, Knight, P, Knipe, S, Knott, S, Kobuchi, T, Kochl, F, Kocsis, G, Kodeli, I, Koechl, F, Kogut, D, Koivuranta, S, Kolesnichenko, Y, Kollo, Z, Kominis, Y, Koppen, M, Korolczuk, S, Kos, B, Koslowski, Hr, Kotschenreuther, M, Koubiti, M, Kovaldins, R, Kovanda, O, Kowalska-Strzeciwilk, E, Krasilnikov, A, Krasilnikov, V, Krawczyk, N, Kresina, M, Krieger, K, Krivska, A, Kruezi, U, Ksiazek, I, Kukushkin, A, Kundu, A, Kurki-Suonio, T, Kwak, S, Kwon, Oj, Laguardia, L, Lahtinen, A, Laing, A, Lalousis, P, Lam, N, Lamb, C, Lambertz, Ht, Lang, Pt, Lanthaler, S, Neto, El, Laszynska, E, Lawless, R, Lawson, Kd, Lazaros, A, Lazzaro, E, Leach, R, Learoyd, G, Leerink, S, Lefebvre, X, Leggate, Hj, Lehmann, J, Lehnen, M, Leichauer, P, Leichtle, D, Leipold, F, Lengar, I, Lennholm, M, Lepiavko, B, Leppanen, J, Lerche, E, Lescinskis, A, Lescinskis, B, Lesnoj, S, Leyland, M, Leysen, W, Li, Y, Li, L, Liang, Y, Likonen, J, Linke, J, Linsmeier, C, Lipschultz, B, Litaudon, X, Liu, G, Lloyd, B, Lo Schiavo, Vp, Loarer, T, Loarte, A, Lomanowski, B, Lomas, Pj, Lonnroth, J, Lopez, Jm, Lorenzini, R, Losada, U, Loughlin, M, Lowry, C, Luce, T, Lucock, R, Lukin, A, Luna, C, Lungaroni, M, Lungu, Cp, Lungu, M, Lunniss, A, Lunt, T, Lupelli, I, Lutsenko, V, Lyssoivan, A, Macheta, P, Macusova, E, Magesh, B, Maggi, C, Maggiora, R, Mahesan, S, Maier, H, Maingi, R, Makwana, R, Malaquias, A, Malinowski, K, Malizia, A, Manas, P, Manduchi, G, Manso, Me, Mantica, P, Manzanares, A, Maquet, P, Marandet, Y, Marcenko, N, Marchetto, C, Marchuk, O, Marconato, N, Marin, M, Marinelli, M, Marinucci, M, Markovic, T, Marocco, D, Marot, L, Marsh, J, Martin, A, de Aguilera, Am, Martin-Solis, Jr, Martone, R, Martynova, Y, Maruyama, S, Maslov, M, Matejcik, S, Mattei, M, Matthews, Gf, Matveev, D, Matveeva, E, Mauriya, A, Maviglia, F, May-Smith, T, Mayer, M, Mayoral, Ml, Mazon, D, Mazzotta, C, Mcadams, R, Mccarthy, Pj, Mcclements, Kg, Mccormack, O, Mccullen, Pa, Mcdonald, D, Mchardy, M, Mckean, R, Mckehon, J, Mcnamee, L, Meadowcroft, C, Meakins, A, Medley, S, Meigh, S, Meigs, Ag, Meisl, G, Meiter, S, Meitner, S, Meneses, L, Menmuir, S, Mergia, K, Merle, A, Merriman, P, Mertens, P, Meshchaninov, S, Messiaen, A, Meyer, H, Michling, R, Milanesio, D, Militello, F, Militello-Asp, E, Milocco, A, Miloshevsky, G, Mink, F, Minucci, S, Miron, I, Mistry, S, Miyoshi, Y, Mlynar, J, Moiseenko, V, Monaghan, P, Monakhov, I, Moon, S, Mooney, R, Moradi, S, Moran, J, Mordijck, S, Moreira, L, Moro, F, Morris, J, Moser, L, Mosher, S, Moulton, D, Mrowetz, T, Muir, A, Muraglia, M, Murari, A, Muraro, A, Murphy, S, Muscat, P, Muthusonai, N, Myers, C, Asakura, Nn, N'Konga, B, Nabais, F, Naish, R, Naish, J, Nakano, T, Napoli, F, Nardon, E, Naulin, V, Nave, Mff, Nedzelskiy, I, Nemtsev, G, Nesenevich, V, Nespoli, F, Neto, A, Neu, R, Neverov, V, Newman, M, Ng, S, Nicassio, M, Nielsen, Ah, Nina, D, Nishijima, D, Noble, C, Nobs, Cr, Nodwell, D, Nordlund, K, Nordman, H, Normanton, R, Noterdaeme, Jm, Nowak, S, Nunes, I, O'Gorman, T, O'Mullane, M, Oberkofler, M, Oberparleiter, M, Odupitan, T, Ogawa, Mt, Okabayashi, M, Oliver, H, Olney, R, Omoregie, L, Ongena, J, Orsitto, F, Orszagh, J, Osborne, T, Otin, R, Owen, A, Owen, T, Paccagnella, R, Packer, Lw, Pajuste, E, Pamela, S, Panja, S, Papp, P, Papp, G, Parail, V, Pardanaud, C, Diaz, Fp, Parsloe, A, Parsons, N, Parsons, M, Pasqualotto, R, Passeri, M, Patel, A, Pathak, S, Patten, H, Pau, A, Pautasso, G, Pavlichenko, R, Pavone, A, Pawelec, E, Soldan, Cp, Peackoc, A, Pehkonen, Sp, Peluso, E, Penot, C, Penzo, J, Pepperell, K, Pereira, R, Cippo, Ep, von Thun, Cp, Pericoli, V, Peruzzo, S, Peterka, M, Petersson, P, Petravich, G, Petre, A, Petrzilka, V, Philipps, V, Pigatto, L, Pillon, M, Pinches, S, Pintsuk, G, Piovesan, P, de Sa, Wp, dos Reis, Ap, Piron, L, Piron, C, Pironti, A, Pisano, F, Pitts, R, Plyusnin, V, Poli, Fm, Pomaro, N, Pompilian, Og, Pool, P, Popovichev, S, Poradzinski, M, Porfiri, Mt, Porosnicu, C, Porton, M, Possnert, G, Potzel, S, Poulipoulis, G, Powell, T, Prajapati, V, Prakash, R, Predebon, I, Prestopino, G, Price, D, Price, M, Price, R, Primetzhofer, D, Prior, P, Pucella, G, Puglia, P, Puiatti, Me, Purahoo, K, Pusztai, I, Putterich, T, Rachlew, E, Rack, M, Ragona, R, Rainford, M, Raj, P, Rakha, A, Ramogida, G, Ranjan, S, Rapson, Cj, Rasmussen, D, Rasmussen, Jj, Rathod, K, Ratta, G, Ratynskaia, S, Ravera, G, Rebai, M, Reed, A, Refy, D, Regana, J, Reich, M, Reid, N, Reimold, F, Reinhart, M, Reinke, M, Reiser, D, Rendell, D, Reux, C, Cortes, Sdar, Reynolds, S, Ricci, D, Richiusa, M, Rigamonti, D, Rimini, Fg, Risner, J, Riva, M, Rivero-Rodriguez, J, Roach, C, Robins, R, Robinson, S, Robson, D, Rodionov, R, Rodrigues, P, Rodriguez, J, Rohde, V, Romanelli, M, Romanelli, F, Romanelli, S, Romazanov, J, Rowe, S, Rubel, M, Rubinacci, G, Rubino, G, Ruchko, L, Ruset, C, Rzadkiewicz, J, Sabot, R, Saez, X, Safi, E, Sahlberg, A, Saibene, G, Saleem, M, Salewski, M, Salmi, A, Salmon, R, Salzedas, F, Samm, U, Sandiford, D, Santa, P, Santala, Mik, Santos, B, Santucci, A, Sartori, F, Sartori, R, Sauter, O, Scannell, R, Schluck, F, Schlummer, T, Schmid, K, Schmuck, S, Schopf, K, Schweinzer, J, Schworer, D, Scott, Sd, Sergienko, G, Sertoli, M, Shabbir, A, Sharapov, Se, Shaw, A, Sheikh, H, Shepherd, A, Shevelev, A, Shiraki, D, Shumack, A, Sias, G, Sibbald, M, Sieglin, B, Silburn, S, Silva, J, Silva, A, Silva, C, Silvagni, D, Simmons, P, Simpson, J, Sinha, A, Sipila, Sk, Sips, Acc, Siren, P, Sirinelli, A, Sjostrand, H, Skiba, M, Skilton, R, Skvara, V, Slade, B, Smith, R, Smith, P, Smith, Sf, Snoj, L, Soare, S, Solano, Er, Somers, A, Sommariva, C, Sonato, P, Sos, M, Sousa, J, Sozzi, C, Spagnolo, S, Sparapani, P, Spelzini, T, Spineanu, F, Sprada, D, Sridhar, S, Stables, G, Stallard, J, Stamatelatos, I, Stamp, Mf, Stan-Sion, C, Stancar, Z, Staniec, P, Stankunas, G, Stano, M, Stavrou, C, Stefanikova, E, Stepanov, I, Stephen, Av, Stephen, M, Stephens, J, Stevens, B, Stober, J, Stokes, C, Strachan, J, Strand, P, Strauss, Hr, Strom, P, Studholme, W, Subba, F, Suchkov, E, Summers, Hp, Sun, H, Sutton, N, Svensson, J, Sytnykov, D, Szabolics, T, Szepesi, G, Suzuki, Tt, Tabares, F, Tadic, T, Tal, B, Tala, T, Taliercio, C, Tallargio, A, Tanaka, K, Tang, W, Tardocchi, M, Tatali, R, Taylor, D, Tegnered, D, Telesca, G, Teplova, N, Teplukhina, A, Terranova, D, Terry, C, Testa, D, Tholerus, E, Thomas, J, Thompson, Vk, Thornton, A, Tierens, W, Tiseanu, I, Tojo, H, Tokitani, M, Tolias, P, Tomes, M, Trimble, P, Tripsky, M, Tsalas, M, Tsavalas, P, Tskhakaya, D, Jun, Dt, Turner, I, Turner, Mm, Turnyanskiy, M, Tvalashvili, G, Tyshchenko, M, Uccello, A, Uljanovs, J, Urano, H, Urban, A, Urbanczyk, G, Uytdenhouwen, I, Vadgama, A, Valcarcel, D, Vale, R, Valentinuzzi, M, Valerii, K, Valisa, M, Olivares, Pv, Valovic, M, Van Eester, D, Van Renterghem, W, van Rooij, Gj, Varje, J, Vartanian, S, Vasava, K, Vasilopoulou, T, Vecsei, M, Vega, J, Ventre, S, Verdoolaege, G, Verona, C, Rinati, Gv, Veshchev, E, Vianello, N, Vicente, J, Viezzer, E, Villari, S, Villone, F, Vincent, M, Vincenzi, P, Vinyar, I, Viola, B, Vitins, A, Vizvary, Z, Vlad, M, Voitsekhovitch, I, Voltolina, D, von Toussaint, U, Vondracek, P, Vuksic, M, Wakeling, B, Waldon, C, Walkden, N, Walker, R, Walker, M, Walsh, M, Wang, N, Wang, E, Warder, S, Warren, R, Waterhouse, J, Watts, C, Wauters, T, Webb, M, Weckmann, A, Weiland, J, Weiland, M, Weisen, H, Weiszflog, M, Welch, P, West, A, Wheatley, M, Wheeler, S, Whitehead, Am, Whittaker, D, Widdowson, Am, Wiesen, S, Wilkie, G, Williams, J, Willoughby, D, Wilson, J, Wilson, I, Wilson, Hr, Wischmeier, M, Withycombe, A, Witts, D, Wolfrum, E, Wood, R, Woodley, R, Woodley, C, Wray, S, Wright, Jc, Wright, P, Wukitch, S, Wynn, A, Xiang, L, Xu, T, Xue, Y, Yadikin, D, Yakovenko, Y, Yanling, W, Yavorskij, V, Young, I, Young, R, Young, D, Zacks, J, Zagorski, R, Zaitsev, F, Zakharov, L, Zanino, R, Zarins, A, Zarins, R, Fernandez, Dz, Zastrow, Kd, Zerbini, M, Zhang, W, Zhou, Y, Zilli, E, Zocco, A, Zoita, V, Zoletnik, S, Zwingmann, W, Zychor, I, and JET Contributors
- Subjects
Physics ,Nuclear and High Energy Physics ,Fusion ,Jet (fluid) ,Maximum power principle ,Nuclear engineering ,Context (language use) ,Plasma ,Fusion power ,Condensed Matter Physics ,01 natural sciences ,7. Clean energy ,ICRH ,Charged particle ,010305 fluids & plasmas ,JET ,transport ,TRANSPORT ,Physics::Plasma Physics ,Beta (plasma physics) ,0103 physical sciences ,010306 general physics - Abstract
Predictability of burning plasmas is a key issue for designing and building credible future fusion devices. In this context, an important effort of physics understanding and guidance is being carried out in parallel to the on-going JET experimental campaigns in H, D and T by performing analyses and modelling towards an improvement of the understanding of DT physics for the optimization of the JET-DT neutron yield and fusion born alpha particle physics. Extrapolations to JET-DT from recent experiments using the maximum power available have been performed including some of the most sophisticated codes and a broad selection of models. There is a general agreement that 11-15MW of fusion power can be expected in DT for the hybrid and baseline scenarios. On the other hand, in high beta, torque and fast ion fraction conditions, isotope effects could be favourable leading to higher fusion yield. It is shown that alpha particles related physics, such as TAE destabilization or fusion power electron heating, could be studied in ITER relevant JET-DT plasmas.
- Published
- 2019
- Full Text
- View/download PDF
18. Phase contrast imaging measurements and numerical simulations of turbulent density fluctuations in gas-fuelled ECRH discharges in Wendelstein 7-X
- Author
-
Andreas Langenberg, J.-P. Bähner, H. M. Smith, Gabriel G. Plunk, T. Windisch, S. K. Hansen, E. M. Edlund, M. N. A. Beurskens, S. A. Bozhenkov, O. P. Ford, Z. Huang, N. A. Pablant, A. von Stechow, Miklos Porkolab, Olaf Grulke, Frank Jenko, L. Vano, J. A. Alcuson, A. Banon Navarro, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Toroidal and poloidal ,Turbulence ,Phase (waves) ,Plasma ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,law.invention ,Physics::Plasma Physics ,law ,0103 physical sciences ,Wavenumber ,Wendelstein 7-X ,Phase velocity ,010306 general physics ,Stellarator - Abstract
The fundamental nature of turbulent density fluctuations in standard Wendelstein 7-X (W7-X) stellarator discharges is investigated experimentally via phase contrast imaging (PCI) in combination with gyrokinetic simulations with the code GENE. We find that density fluctuations are ion-temperature-gradient-driven and radially localised in the outer half of the plasma. It is shown that the line-integrated PCI measurements cover the right range of wavenumbers and a favourable toroidal and poloidal location to capture some of the strongest density fluctuations in W7-X. Due to the radial localisation of fluctuations, measured wavenumber–frequency spectra exhibit a dominant phase velocity, which can be related to the $\boldsymbol {E\times B}$ rotation velocity at the radial position of a well in the neoclassical radial electric field. The match is robust against variations of heating power and line-integrated density, which is partly due to the localisation of fluctuations and partly due to effects of the radial gradient in the $\boldsymbol {E\times B}$ velocity profile on the wavenumber–frequency spectrum. The latter effect is studied with a newly built synthetic PCI diagnostic and global gyrokinetic simulations with GENE-3D.
- Published
- 2021
- Full Text
- View/download PDF
19. Nonlinear electromagnetic interplay between fast ions and ion-temperature-gradient plasma turbulence
- Author
-
Emanuele Poli, I. Novikau, F. Vannini, Frank Jenko, Nicola Bonanomi, R. Bilato, A. Banon Navarro, Tobias Görler, A. Di Siena, and Alessandro Biancalani
- Subjects
Physics ,Fusion ,Turbulence ,Zonal flow (plasma) ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Ion ,Computational physics ,Nonlinear system ,Coupling (physics) ,Physics::Plasma Physics ,0103 physical sciences ,Wavenumber ,010306 general physics ,Scaling - Abstract
In strong electromagnetic regimes, gyrokinetic simulations have linked a substantial ion-scale turbulence stabilization to the presence of supra-thermal particles, capturing qualitatively well the experimental observations in different devices worldwide. An explanation for the underlying physical mechanism responsible for the fast-ion-induced turbulent transport reduction observed in the numerical simulations has been proposed only recently by Di Sienaet al.(Nucl. Fusion, vol. 59, 2019, p. 124001;Nucl. Fusion, vol. 60, 2020, p. 089501). It involves a nonlinear cross-scale coupling (nonlinear interaction involving different modes at different wavenumbers) between ion-temperature-gradient and marginally stable Alfvén eigenmodes, which in turn increases zonal flow activity. In view of an optimization of this turbulence-stabilizing effect, the key parameters controlling the nonlinear cross-scale coupling are here identified. At the same time, these findings provide useful insights for reduced-turbulence models and integrative approaches, which might be trained on the results presented in this paper to grasp the underlying physics and the parameter scaling of the beneficial effects of fast particles on plasma turbulence.
- Published
- 2021
- Full Text
- View/download PDF
20. First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER
- Author
-
Garcia, J, Dumont, R, Joly, J, Morales, J, Garzotti, L, Bache, T, Baranov, Y, Casson, F, Challis, C, Kirov, K, Mailloux, J, Saarelma, S, Nocente, M, Banon-Navarro, A, Goerler, T, Citrin, J, Ho, A, Gallart, D, Mantsinen, M, Mariani, A, Garcia J., Dumont R. J., Joly J., Morales J., Garzotti L., Bache T. W., Baranov Y., Casson F. J., Challis C., Kirov K., Mailloux J., Saarelma S., Nocente M., Banon-Navarro A., Goerler T., Citrin J., Ho A., Gallart D., Mantsinen M., MARIANI, ALBERTO, Garcia, J, Dumont, R, Joly, J, Morales, J, Garzotti, L, Bache, T, Baranov, Y, Casson, F, Challis, C, Kirov, K, Mailloux, J, Saarelma, S, Nocente, M, Banon-Navarro, A, Goerler, T, Citrin, J, Ho, A, Gallart, D, Mantsinen, M, Mariani, A, Garcia J., Dumont R. J., Joly J., Morales J., Garzotti L., Bache T. W., Baranov Y., Casson F. J., Challis C., Kirov K., Mailloux J., Saarelma S., Nocente M., Banon-Navarro A., Goerler T., Citrin J., Ho A., Gallart D., Mantsinen M., and MARIANI, ALBERTO
- Abstract
Predictability of burning plasmas is a key issue for designing and building credible future fusion devices. In this context, an important effort of physics understanding and guidance is being carried out in parallel to JET experimental campaigns in H and D by performing analyses and modelling towards an improvement of the understanding of DT physics for the optimization of the JET-DT neutron yield and fusion born alpha particle physics. Extrapolations to JET-DT from recent experiments using the maximum power available have been performed including some of the most sophisticated codes and a broad selection of models. There is a general agreement that 11-15 MW of fusion power can be expected in DT for the hybrid and baseline scenarios. On the other hand, in high beta, torque and fast ion fraction conditions, isotope effects could be favourable leading to higher fusion yield. It is shown that alpha particles related physics, such as TAE destabilization or fusion power electron heating, could be studied in ITER relevant JET-DT plasmas.
- Published
- 2019
21. Nonlinear global gyrokinetic stellarator simulations of GENE-3D with kinetic electrons
- Author
-
Wilms, F., Banon Navarro, A., Merlo, G., Leppin, L., Görler, T., Dannert, T., Hindenlang, F., and Jenko, F.
- Published
- 2021
22. Gyrokinetic simulations in stellarators using different computational domains
- Author
-
A. Banon Navarro, Ivan Calvo, A. González-Jerez, J. H. E. Proll, C. D. Mora Moreno, E. Sánchez, J. Smoniewski, Ralf Kleiber, Michael Barnes, Felix I. Parra, J. M. Garcia-Regana, J. Riemann, Turbulence in Fusion Plasmas, and Science and Technology of Nuclear Fusion
- Subjects
Nuclear and High Energy Physics ,FOS: Physical sciences ,Flux ,01 natural sciences ,full surface ,010305 fluids & plasmas ,law.invention ,stellarator ,zonal flows ,law ,0103 physical sciences ,Wavenumber ,gyrokinetic simulations ,flux tube ,010306 general physics ,Adiabatic process ,Physics ,Flux tube ,Relaxation (NMR) ,Mechanics ,Computational Physics (physics.comp-ph) ,global ,Condensed Matter Physics ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,ion temperature gradient ,Zonal flow ,Physics - Computational Physics ,Stellarator ,Linear stability - Abstract
In this work, we compare gyrokinetic simulations in stellarators using different computational domains, namely, flux tube, full-flux-surface, and radially global domains. Two problems are studied: the linear relaxation of zonal flows and the linear stability of ion temperature gradient (ITG) modes. Simulations are carried out with the codes EUTERPE, GENE, GENE-3D, and stella in magnetic configurations of LHD and W7-X using adiabatic electrons. The zonal flow relaxation properties obtained in different flux tubes are found to differ with each other and with the radially global result, except for sufficiently long flux tubes, in general. The flux tube length required for convergence is configuration-dependent. Similarly, for ITG instabilities, different flux tubes provide different results, but the discrepancy between them diminishes with increasing flux tube length. Full-flux-surface and flux tube simulations show good agreement in the calculation of the growth rate and frequency of the most unstable modes in LHD, while for W7-X differences in the growth rates are found between the flux tube and the full-flux-surface domains. Radially global simulations provide results close to the full-flux-surface ones. The radial scale of unstable ITG modes is studied in global and flux tube simulations finding that in W7-X, the radial scale of the most unstable modes depends on the binormal wavenumber, while in LHD no clear dependency is found., submitted to Nuclear Fusion
- Published
- 2021
23. Synthetic Phase Contrast Imaging Diagnostic for Wendelstein 7-X
- Author
-
Hansen, S., Porkolab, M., Huang, Z., Bähner, J., Stechow, A., Grulke, O., Edlund, E., Banon Navarro, A., Sanchez, E., and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Published
- 2021
24. Global electromagnetic turbulence simulations of W7-X-like plasmas with GENE-3D
- Author
-
Gabriele Merlo, Leonhard Leppin, Felix Wilms, Alejandro Banon Navarro, Frank Jenko, Tobias Görler, Florian Hindenlang, and Tilman Dannert
- Subjects
Physics ,Physics::Plasma Physics ,Turbulence ,0103 physical sciences ,Plasma ,010306 general physics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Computational physics - Abstract
The GENE-3D code, the global stellarator version of the established GENE framework, has been extended to an electromagnetic gyrokinetic code. This paper outlines the basic structure of the algorithm, highlighting the treatment of the electromagnetic terms. The numerical implementation is verified against the radially global GENE code in linear and nonlinear tokamak simulations, recovering excellent agreement between both codes. As a first application to stellarator plasmas, linear and nonlinear global simulations with kinetic electrons of ion temperature gradient (ITG) turbulence in Wendelstein 7-X were performed, showing a decrease of ITG activity through the introduction of electromagnetic effects via a finite plasma- $\beta$ . The upgrade makes it possible to study a large variety of new physical scenarios, including kinetic electron and electromagnetic effects, reducing the gap between gyrokinetic models and physically realistic systems.
- Published
- 2021
25. Sub-grid-scale effects in magnetised plasma turbulence
- Author
-
Evgeny A. Gorbunov, Alejandro Banon Navarro, Frank Jenko, Daniel Told, and Bogdan Teaca
- Subjects
Physics ,Scale (ratio) ,Advection ,Turbulence ,FOS: Physical sciences ,Flux ,Plasma ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,Plasma Physics (physics.plasm-ph) ,Physics::Fluid Dynamics ,Filter (large eddy simulation) ,Position (vector) ,0103 physical sciences ,010306 general physics ,Order of magnitude - Abstract
In the present paper, we use a coarse-graining approach to investigate the nonlinear redistribution of free energy in both position and scale space for weakly collisional magnetised plasma turbulence. For this purpose, we use high-resolution numerical simulations of gyrokinetic (GK) turbulence that span the proton-electron range of scales, in a straight magnetic guide field geometry. Accounting for the averaged effect of the particles' fast gyro-motion on the slow plasma fluctuations, the GK approximation captures the dominant energy redistribution mechanisms in strongly magnetised plasma turbulence. Here, the GK system is coarse-grained with respect to a cut-off scale, separating in real space the contributions to the nonlinear interactions from the coarse-grid-scales and the sub-grid-scales (SGS). We concentrate on the analysis of nonlinear SGS effects. Not only that this allows us to investigate the flux of free energy across the scales, but also to now analyse its spatial density. We find that the net value of scale flux is an order of magnitude smaller than both the positive and negative flux density contributions. The dependence of the results on the filter type is also analysed. Moreover, we investigate the advection of energy in position space. This rather novel approach for GK turbulence can help in the development of SGS models that account for advective unstable structures for space and fusion plasmas, and with the analysis of the turbulent transport saturation., Comment: 15 figures Accepted for publication by Journal of Plasma Physics
- Published
- 2021
26. Investigation of increased core ion temperatures in high-beta advanced scenarios in ASDEX Upgrade
- Author
-
Reisner, M., Stober, J., Di Siena, A., Fischer, R., Burckhart, A., Bock, A., Fable, E., McDermott, R., Banon Navarro, A., and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Published
- 2021
27. Turbulence Suppression by Energetic Particle Effects in Modern Optimized Stellarators
- Author
-
A. Banon Navarro, A. Di Siena, and Frank Jenko
- Subjects
Particle system ,Physics ,Tokamak ,Turbulence ,FOS: Physical sciences ,General Physics and Astronomy ,Plasma confinement ,Plasma ,01 natural sciences ,Physics - Plasma Physics ,Computational physics ,law.invention ,Plasma Physics (physics.plasm-ph) ,Physics::Plasma Physics ,law ,Physics::Space Physics ,0103 physical sciences ,Limit (music) ,010306 general physics ,Reduction (mathematics) ,Stellarator - Abstract
Turbulent transport is known to limit the plasma confinement of present-day optimized stellarators. To address this issue, a novel method to strongly suppress turbulence in such devices is proposed, namely the resonant wave-particle interaction of suprathermal particles---e.g., from ion-cyclotron-resonance-frequency heating---with turbulence-driving microinstabilities like ion-temperature-gradient modes. The effectiveness of this mechanism is demonstrated via large-scale gyrokinetic simulations, revealing an overall turbulence reduction by up to 65% in the case under consideration. Comparisons with a tokamak configuration highlight the critical role played by the magnetic geometry and the first steps into the optimization of fast particle effects in stellarator devices are discussed. These results hold the promise of new and still unexplored stellarator scenarios with reduced turbulent transport, essential for achieving burning plasmas in future devices.
- Published
- 2020
- Full Text
- View/download PDF
28. Linear gyrokinetics of electron–positron plasmas in closed field-line systems
- Author
-
Tobias Görler, Alexey Mishchenko, D. Kennedy, Per Helander, A. Banon Navarro, and Pavlos Xanthopoulos
- Subjects
Physics ,Field line ,Gyroradius ,Plasma ,Parameter space ,Condensed Matter Physics ,Computational physics ,symbols.namesake ,Orders of magnitude (time) ,Physics::Plasma Physics ,Physics::Space Physics ,Gyrokinetics ,symbols ,Debye length ,Linear stability - Abstract
Linear gyrokinetic simulations of magnetically confined electron–positron plasmas are performed for the first time in the geometry and parameter regimes likely to be relevant for upcoming laboratory experiments. In such plasmas, the density will be sufficiently small as to render the plasma effectively collisionless. The magnetic field will be very large, meaning that the Debye length will exceed the gyroradius by a few orders of magnitude. We show the results of linear simulations in flux tubes close to the current carrying ring and also in the bulk of the plasma, demonstrating the existence of entropy modes and interchange modes in pair plasmas. We study linear stability and show that in the relevant configurations, almost complete linear stability is attainable in large swathes of parameter space.
- Published
- 2020
- Full Text
- View/download PDF
29. Phase contrast imaging measurements and numerical simulations of turbulent density fluctuations in gas-fuelled ECRH discharges in Wendelstein 7-X
- Author
-
Baehner, J. -P., Alcuson, J. K., Hansen, S. K., von Stechow, A., Grulke, O., Windisch, T., Smith, H. M., Huang, Z., Edlund, E. M., Porkolab, M., Beurskens, M. N. A., Bozhenkov, S. A., Ford, O. P., Vano, L., Langenberg, A., Pablant, N., Plunk, G. G., Banon Navarro, A., Jenko, F., Baehner, J. -P., Alcuson, J. K., Hansen, S. K., von Stechow, A., Grulke, O., Windisch, T., Smith, H. M., Huang, Z., Edlund, E. M., Porkolab, M., Beurskens, M. N. A., Bozhenkov, S. A., Ford, O. P., Vano, L., Langenberg, A., Pablant, N., Plunk, G. G., Banon Navarro, A., and Jenko, F.
- Abstract
The fundamental nature of turbulent density fluctuations in standard Wendelstein 7-X (W7-X) stellarator discharges is investigated experimentally via phase contrast imaging (PCI) in combination with gyrokinetic simulations with the code GENE. We find that density fluctuations are ion-temperature-gradient-driven and radially localised in the outer half of the plasma. It is shown that the line-integrated PCI measurements cover the right range of wavenumbers and a favourable toroidal and poloidal location to capture some of the strongest density fluctuations in W7-X. Due to the radial localisation of fluctuations, measured wavenumber-frequency spectra exhibit a dominant phase velocity, which can be related to the E X B rotation velocity at the radial position of a well in the neoclassical radial electric field. The match is robust against variations of heating power and line-integrated density, which is partly due to the localisation of fluctuations and partly due to effects of the radial gradient in the E X B velocity profile on the wavenumber-frequency spectrum. The latter effect is studied with a newly built synthetic PCI diagnostic and global gyrokinetic simulations with GENE-3D.
- Published
- 2021
30. Increased core ion temperatures in high-beta advanced scenarios in ASDEX upgrade
- Author
-
R. Fischer, A. Di Siena, M. Reisner, A. Banon Navarro, J. Stober, A. Bock, R. M. McDermott, E. Fable, V. Bobkov, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Nuclear and High Energy Physics ,Plasma heating ,Nuclear engineering ,Ion temperature ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Ion ,Bootstrap current ,Core (optical fiber) ,ASDEX Upgrade ,Beta (plasma physics) ,0103 physical sciences ,010306 general physics - Published
- 2020
- Full Text
- View/download PDF
31. Corrigendum: Electromagnetic turbulence suppression by energetic particle driven modes (2019 Nucl. Fusion 59 124001)
- Author
-
M. J. Mantsinen, R. Bilato, Alessandro Biancalani, Frank Jenko, Tobias Görler, A. Banon Navarro, Emanuele Poli, F.N. deOliveira-Lopes, A. Di Siena, EUROfusion MST1 Team, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Fusion ,Turbulence ,0103 physical sciences ,Particle ,010306 general physics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas - Published
- 2020
- Full Text
- View/download PDF
32. Exploring fusion-reactor physics with high-power electron cyclotron resonance heating on ASDEX Upgrade
- Author
-
W. Suttrop, C. Angioni, T.A. Scherer, R. Fischer, L. G. Popov, E. M. Tai, A. Bock, Tobias Görler, Mst Team, V. Igochine, A. Meier, Emanuele Poli, M. Reisner, V. Nichiporenko, Th. Pütterich, V. Bobkov, M. Münich, G. G. Denisov, G. Gantenbein, F. Leuterer, Manfred Thumm, M. Schubert, W. Kasparek, A. Banon Navarro, E. Fable, B. Plaum, R. M. McDermott, Aleksandr Grigorievich Litvak, F. Monaco, J. Stober, H. Zohm, D. Wagner, L. Gil, U. Plank, MST1 Team, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Technology ,Tokamak ,Cyclotron ,high-beta ,7. Clean energy ,01 natural sciences ,Electron cyclotron resonance ,Resonant magnetic perturbations ,010305 fluids & plasmas ,law.invention ,ASDEX Upgrade ,law ,0103 physical sciences ,010306 general physics ,Physics ,Plasma ,Fusion power ,Condensed Matter Physics ,Neutral beam injection ,Computational physics ,ECRH ,q-profile ,Nuclear Energy and Engineering ,ECCD ,non-inductive ,ddc:600 - Abstract
The electron cyclotron resonance heating (ECRH) system of the ASDEX Upgrade tokomak has been upgraded over the last 15 years from a 2 MW, 2 s, 140 GHz system to an 8 MW, 10 s, dual frequency system (105/140 GHz). The power exceeds the L/H power threshold by at least a factor of two, even for high densities, and roughly equals the installed ion cyclotron range of frequencies power. The power of both wave heating systems together (>10 MW in the plasma) is about half of the available neutral beam injection (NBI) power, allowing significant variations of torque input, of the shape of the heating profile and of Qe/Qi, even at high heating power. For applications at a low magnetic field an X3-heating scheme is routinely in use. Such a scenario is now also forseen for ITER to study the first H-modes at one third of the full field. This versatile system allows one to address important issues fundamental to a fusion reactor: H-mode operation with dominant electron heating, accessing low collisionalities in full metal devices (also related to suppression of edge localized modes with resonant magnetic perturbations), influence of Te/Ti and rotational shear on transport, and dependence of impurity accumulation on heating profiles. Experiments on all these subjects have been carried out over the last few years and will be presented in this contribution. The adjustable localized current drive capability of ECRH allows dedicated variations of the shape of the q-profile and the study of their influence on non-inductive tokamak operation (so far at q 95 > 5.3). The ultimate goal of these experiments is to use the experimental findings to refine theoretical models such that they allow a reliable design of operational schemes for reactor size devices. In this respect, recent studies comparing a quasi-linear approach (TGLF) with fully non-linear modeling (GENE) of non-inductive high-beta plasmas will be reported.
- Published
- 2020
- Full Text
- View/download PDF
33. Multi-species collisions for delta-f gyrokinetic simulations: Implementation and verification with GENE
- Author
-
Paul H. Crandall, Gabriele Merlo, Frank Jenko, H. Doerk, Maurice Maurer, Tobias Görler, Daniel Told, Qingjiang Pan, D. Jarema, and A. Banon Navarro
- Subjects
Physics ,Operator (physics) ,General Physics and Astronomy ,Relaxation (iterative method) ,Dissipation ,Collisionality ,01 natural sciences ,010305 fluids & plasmas ,Machine epsilon ,Momentum ,Nonlinear system ,Hardware and Architecture ,0103 physical sciences ,Gyrokinetics ,Statistical physics ,010306 general physics - Abstract
A multi-species linearized collision operator based on the model developed by Sugama et al. has been implemented in the nonlinear gyrokinetic code, GENE. Such a model conserves particles, momentum, and energy to machine precision, and is shown to have negative definite free energy dissipation characteristics, satisfying Boltzmann’s H-theorem, including for realistic mass ratio. Finite Larmor Radius (FLR) effects have also been implemented into the local version of the code. For the global version of the code, the collision operator has been developed to allow for block-structured velocity space grids, allowing for computationally tractable collisional global simulations. The validity of the collision operator has been demonstrated by relaxation and conservation tests, as well as appropriate benchmarks. The newly implemented operator shall be used in future simulations to study magnetically confined fusion plasma turbulence and transport in more extreme regions with higher collisionality.
- Published
- 2020
- Full Text
- View/download PDF
34. Global gyrokinetic simulations of ITG turbulence in the magnetic configuration space of the Wendelstein 7-X stellarator
- Author
-
Gabriele Merlo, A. Di Siena, A. von Stechow, F. Wilms, Pavlos Xanthopoulos, Gabriel G. Plunk, Frank Jenko, A. Banon Navarro, Florian Hindenlang, and Maurice Maurer
- Subjects
Physics ,Turbulence ,FOS: Physical sciences ,Condensed Matter Physics ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,Computational physics ,law.invention ,Plasma Physics (physics.plasm-ph) ,Nuclear Energy and Engineering ,law ,0103 physical sciences ,Configuration space ,Wendelstein 7-X ,010306 general physics ,Stellarator - Abstract
We study the effect of turbulent transport in different magnetic configurations of the Weldenstein 7-X stellarator. In particular, we performed direct numerical simulations with the global gyrokinetic code GENE-3D, modeling the behavior of Ion Temperature Gradient turbulence in the Standard, High-Mirror and Low-Mirror configurations of W7-X. We found that the Low-Mirror configuration produces more transport than both the High-Mirror and the Standard configurations. By comparison with radially local simulations, we have demonstrated the importance of performing global non-linear simulations to predict the turbulent fluxes quantitatively.
- Published
- 2020
- Full Text
- View/download PDF
35. Gyrokinetics of electron-positron plasmas in a magnetic Z-pinch: towards a turbulence free plasma?
- Author
-
Kennedy, D., Mishchenko, A., Xanthopoulos, P., Helander, P., Banon Navarro, A., and Görler, T.
- Published
- 2019
36. En Route to High-Performance Discharges: Insights and Guidance from High-Realism Gyrokinetics
- Author
-
Görler, T., Di Siena, A., Doerk, H., Happel, T., Banon Navarro, A., Bilato, R., Bock, A., Conway, G., Jenko, F., Poli, E., Sonnendruecker, E., Stober, J., Farcas, I., Neckel, T., Citrin, J., Freethy, S., Creely, A., White, A., Hennequin, P., Johnson, T., Lechte, C., Schneider, M., ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society, and JET Contributors
- Published
- 2019
37. Gyrokinetic GENE simulations of DIII-D near-edge L-mode plasmas editors-pick
- Author
-
Neiser, T., Jenko, F., Carter, T., Schmitz, L., Told, D., Merlo, G., Banon Navarro, A., Crandall, P., McKee, G., and Yan, Z.
- Published
- 2019
38. Gyrokinetic GENE simulations of DIII-D near-edge L-mode plasmas
- Author
-
Lothar Schmitz, Daniel Told, Tom Neiser, George McKee, A. Banon Navarro, Zheng Yan, P. C. Crandall, Troy Carter, F. Jenko, and Gabriele Merlo
- Subjects
Physics ,Tokamak ,DIII-D ,Thomson scattering ,FOS: Physical sciences ,Electron ,Mass ratio ,Condensed Matter Physics ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,Ion ,Computational physics ,law.invention ,Plasma Physics (physics.plasm-ph) ,Heat flux ,law ,Physics::Plasma Physics ,0103 physical sciences ,Electron temperature ,010306 general physics - Abstract
We present gyrokinetic simulations with the GENE code addressing the near-edge region of an L-mode plasma in the DIII-D tokamak. At radial position $\rho=0.80$, simulations with the ion temperature gradient increased by $40\%$ above the nominal value give electron and ion heat fluxes that are in simultaneous agreement with the experiment. This gradient increase is consistent with the combined statistical and systematic uncertainty $\sigma$ of the Charge Exchange Recombination Spectroscopy (CER) measurements at the $1.6 \sigma$ level. Multi-scale simulations are carried out with realistic mass ratio and geometry for the first time in the near-edge. These multi-scale simulations suggest that the highly unstable ion temperature gradient (ITG) modes of the flux-matched ion-scale simulations suppress electron-scale transport, such that ion-scale simulations are sufficient at this location. At radial position $\rho=0.90$, nonlinear simulations show a hybrid state of ITG and trapped electron modes~(TEMs), which was not expected from linear simulations. The nonlinear simulations reproduce the total experimental heat flux with the inclusion of $\mathbf{E} \times \mathbf{B}$ shear effects and an increase in the electron temperature gradient by $\sim 23\%$. This gradient increase is compatible with the combined statistical and systematic uncertainty of the Thomson scattering data at the $1.3 \sigma$ level. These results are consistent with previous findings that gyrokinetic simulations are able to reproduce the experimental heat fluxes by varying input parameters close to their experimental uncertainties, pushing the validation frontier closer to the edge region., Comment: 14 pages, 17 figures, published in Physics of Plasmas
- Published
- 2018
39. Interaction of magnetic islands with turbulent electron temperature fluctuations in DIII-D and in GENE nonlinear gyrokinetic simulations
- Author
-
A. Banon Navarro, L. Bardoczi, Troy Carter, Frank Jenko, Choongki Sung, and T. L. Rhodes
- Subjects
Physics ,Nonlinear system ,Nuclear Energy and Engineering ,DIII-D ,Turbulence ,Electron temperature ,Condensed Matter Physics ,Computational physics - Published
- 2019
- Full Text
- View/download PDF
40. A Look at Phase Space Intermittency in Magnetized Plasma Turbulence
- Author
-
Frank Jenko, Alejandro Banon Navarro, Tobias Görler, David Hatch, Gabriel G. Plunk, Bogdan Teaca, and Daniel Told
- Subjects
Physics ,Space and Planetary Science ,Turbulence ,law ,Phase space ,Quantum electrodynamics ,Intermittency ,Plasma turbulence ,Astronomy and Astrophysics ,Plasma ,Magnetohydrodynamics ,law.invention - Published
- 2019
- Full Text
- View/download PDF
41. Controlled neoclassical tearing mode (NTM) healing by fueling pellets and its impact on electron cyclotron current drive requirements for complete NTM stabilization
- Author
-
Todd Evans, B. H. Park, Frank Jenko, R.J. La Haye, George McKee, Minjun Choi, M. Knolker, Se Hoon Park, Daisuke Shiraki, A. Banon Navarro, L. Bardoczi, and Minho Woo
- Subjects
Physics ,Nuclear and High Energy Physics ,law ,Tearing ,Cyclotron ,Pellets ,Mode (statistics) ,Electron ,Mechanics ,Current (fluid) ,Condensed Matter Physics ,law.invention - Published
- 2019
- Full Text
- View/download PDF
42. Nonlinear growth of zonal flows by secondary instability in general magnetic geometry
- Author
-
Plunk, G. and Banon Navarro, A.
- Published
- 2017
43. Fully kinetic versus reduced-kinetic modelling of collisionless plasma turbulence
- Author
-
Alejandro Banon Navarro, C. Willmott, Frank Jenko, Silvio Sergio Cerri, Francesco Califano, Nuno Loureiro, Daniel Grošelj, and Daniel Told
- Subjects
Plasma turbulence ,FOS: Physical sciences ,Kinetic energy ,01 natural sciences ,Physics - Space Physics ,Physics::Plasma Physics ,0103 physical sciences ,010306 general physics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,Turbulence ,turbulence ,Astronomy and Astrophysics ,Plasma ,Mechanics ,plasmas ,Physics - Plasma Physics ,Space Physics (physics.space-ph) ,Plasma Physics (physics.plasm-ph) ,Solar wind ,Astrophysics - Solar and Stellar Astrophysics ,solar wind ,Space and Planetary Science ,Physics::Space Physics - Abstract
We report the results of a direct comparison between different kinetic models of collisionless plasma turbulence in two spatial dimensions. The models considered include a first principles fully-kinetic (FK) description, two widely used reduced models [gyrokinetic (GK) and hybrid-kinetic (HK) with fluid electrons], and a novel reduced gyrokinetic approach (KREHM). Two different ion beta ($\beta_i$) regimes are considered: 0.1 and 0.5. For $\beta_i=0.5$, good agreement between the GK and FK models is found at scales ranging from the ion to the electron gyroradius, thus providing firm evidence for a kinetic Alfv\'en cascade scenario. In the same range, the HK model produces shallower spectral slopes, presumably due to the lack of electron Landau damping. For $\beta_i=0.1$, a detailed analysis of spectral ratios reveals a slight disagreement between the GK and FK descriptions at kinetic scales, even though kinetic Alfv\'en fluctuations likely still play a significant role. The discrepancy can be traced back to scales above the ion gyroradius, where the FK and HK results seem to suggest the presence of fast magnetosonic and ion Bernstein modes in both plasma beta regimes, but with a more notable deviation from GK in the low-beta case. The identified practical limits and strengths of reduced-kinetic approximations, compared here against the fully-kinetic model on a case-by-case basis, may provide valuable insight into the main kinetic effects at play in turbulent collisionless plasmas, such as the solar wind.
- Published
- 2017
- Full Text
- View/download PDF
44. Comparisons between global and local gyrokinetic simulations of an ASDEX Upgrade H-mode plasma
- Author
-
D. Told, Tobias Görler, Alejandro Banon Navarro, Frank Jenko, T. Happel, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Plasma turbulence ,Mode (statistics) ,Ion temperature ,Plasma ,Condensed Matter Physics ,01 natural sciences ,Outer core ,010305 fluids & plasmas ,Computational physics ,Nonlinear system ,ASDEX Upgrade ,0103 physical sciences ,Statistical physics ,Sensitivity (control systems) ,010306 general physics - Abstract
We investigate by means of local and global nonlinear gyrokinetic GENE simulations an ASDEX Upgrade H-mode plasma. We find that for the outer core positions (i.e., ρtor≈0.5−0.7), nonlocal effects are important. For nominal input parameters local simulations over-predict the experimental heat fluxes by a large factor, while a good agreement is found with global simulations. This was a priori not expected, since the values of 1/ρ⋆ were large enough that global and local simulations should have been in accordance. Nevertheless, due to the high sensitivity of the heat fluxes with respect to the input parameters, it is still possible to match the heat fluxes in local simulations with the experimental and global results by varying the ion temperature gradient within the experimental uncertainties. In addition to that, once an agreement in the transport quantities between local (flux-matched) and global simulations is achieved, an agreement for other quantities, such as density and temperature fluctuations, is a...
- Published
- 2016
45. Structure of Plasma Heating in Gyrokinetic Alfvénic Turbulence
- Author
-
D. Told, Bogdan Teaca, Frank Jenko, Alejandro Banon Navarro, Daniel Grošelj, and Paul H. Crandall
- Subjects
Physics ,Plasma heating ,Turbulence ,General Physics and Astronomy ,Electron ,Kinetic energy ,7. Clean energy ,01 natural sciences ,Physics - Plasma Physics ,Computational physics ,Ion ,Alfvén wave ,Physics::Plasma Physics ,Quantum mechanics ,0103 physical sciences ,Physics::Space Physics ,Perpendicular ,Electric current ,010306 general physics ,010303 astronomy & astrophysics - Abstract
We analyze plasma heating in weakly collisional kinetic Alfv\'en wave (KAW) turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e. $\mathbf{J} \!\cdot\! (\mathbf{E} + \mathbf{v}_e\times\mathbf{B})$, as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here., Comment: 5 pages, 3 figures
- Published
- 2016
46. Investigating the radial structure of axisymmetric fluctuations in the TCV tokamak with local and global gyrokinetic GENE simulations
- Author
-
Stefano Coda, Gabriele Merlo, Laurie Porte, Frank Jenko, A. Banon Navarro, Tobias Görler, Laurent Villard, Stephan Brunner, Daniel Told, M. Fontana, Julien Dominski, and Z. Huang
- Subjects
Physics ,Tokamak ,Nuclear Energy and Engineering ,law ,0103 physical sciences ,Rotational symmetry ,Structure (category theory) ,Mechanics ,010306 general physics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention - Published
- 2018
- Full Text
- View/download PDF
47. Microturbulence study of the isotope effect
- Author
-
A. Banon Navarro, A. Bustos, Frank Jenko, Tobias Görler, and C. Hidalgo
- Subjects
Physics ,Plasma parameters ,Turbulence ,Magnetic confinement fusion ,Zonal flow (plasma) ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,Physics::Fluid Dynamics ,Physics::Plasma Physics ,Physics::Space Physics ,0103 physical sciences ,Kinetic isotope effect ,Microturbulence ,Diffusion (business) ,Atomic physics ,010306 general physics ,Shear flow - Abstract
The influence of the ion mass on the dynamics of magnetized plasmas is an important challenge in fusion research. The discrepancies between the improvement of the magnetic confinement with the ion mass in tokamak experiments and diffusive turbulent transport predictions have remained unexplained for several decades. We refer to this phenomenon as the isotope effect. In this paper, we study this effect with gyrokinetic theory using the Gene code. We find several sets of plasma parameters that correspond to low wavenumber turbulence for which the isotope effect is present, although the intensity is smaller than the experimental observations. We also relate these results to the zonal flow intensity of the system, which is characterized by the average shear flow rate.
- Published
- 2015
48. Core turbulence behavior moving from ion-temperature-gradient regime towards trapped-electron-mode regime in the ASDEX Upgrade tokamak and comparison with gyrokinetic simulation
- Author
-
T. Happel, R. M. McDermott, C. Angioni, Tobias Görler, Ulrich Stroth, M. Bernert, Benedikt Geiger, E. Fable, G. D. Conway, F. Ryter, M. G. Dunne, Frank Jenko, A. Banon Navarro, and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Tokamak ,Turbulence ,Electron ,Condensed Matter Physics ,Instability ,Electron cyclotron resonance ,law.invention ,Two-stream instability ,ASDEX Upgrade ,Physics::Plasma Physics ,law ,Phase velocity ,Atomic physics - Abstract
Additional electron cyclotron resonance heating (ECRH) is used in an ion-temperature-gradient instability dominated regime to increase R/LTe in order to approach the trapped-electron-mode instability regime. The radial ECRH deposition location determines to a large degree the effect on R/LTe. Accompanying scale-selective turbulence measurements at perpendicular wavenumbers between k⊥ = 4–18 cm−1 (k⊥ρs = 0.7–4.2) show a pronounced increase of large-scale density fluctuations close to the ECRH radial deposition location at mid-radius, along with a reduction in phase velocity of large-scale density fluctuations. Measurements are compared with results from linear and non-linear flux-matched gyrokinetic (GK) simulations with the gyrokinetic code GENE. Linear GK simulations show a reduction of phase velocity, indicating a pronounced change in the character of the dominant instability. Comparing measurement and non-linear GK simulation, as a central result, agreement is obtained in the shape of radial turbulence...
- Published
- 2015
- Full Text
- View/download PDF
49. The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch
- Author
-
Bogdan Teaca, Alejandro Banon Navarro, and Frank Jenko
- Subjects
Physics ,Turbulence ,FOS: Physical sciences ,Electron ,Condensed Matter Physics ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,Computational physics ,Plasma Physics (physics.plasm-ph) ,Physics::Plasma Physics ,Energy cascade ,Z-pinch ,0103 physical sciences ,Gyrokinetics ,Perpendicular ,Polar coordinate system ,Atomic physics ,010306 general physics ,Anisotropy - Abstract
For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each perpendicular direction is introduced as well, which shows that the redistribution of energy in the presence of zonal flows is highly anisotropic.
- Published
- 2015
- Full Text
- View/download PDF
50. Understanding nonlinear saturation in zonal-flow-dominated ion temperature gradient turbulence
- Author
-
A. Banon Navarro, Frank Jenko, and Gabriel G. Plunk
- Subjects
Physics ,Turbulence ,FOS: Physical sciences ,Mechanics ,Condensed Matter Physics ,Instability ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,Physics::Fluid Dynamics ,Nonlinear system ,Amplitude ,Nuclear Energy and Engineering ,Heat flux ,Physics::Plasma Physics ,Energy cascade ,Physics::Space Physics ,Saturation (magnetic) ,Dimensionless quantity - Abstract
We propose a quantitative model of ion temperature gradient driven turbulence in toroidal magnetized plasmas. In this model, the turbulence is regulated by zonal flows, i.e. mode saturation occurs by a zonal-flow-mediated energy cascade ("shearing"), and zonal flow amplitude is controlled by nonlinear decay. Our model is tested in detail against numerical simulations to confirm that both its assumptions and predictions are satisfied. Key results include (1) a sensitivity of the nonlinear zonal flow response to the energy content of the linear instability, (2) a persistence of zonal-flow-regulated saturation at high temperature gradients, (3) a physical explanation of the nonlinear saturation process in terms of secondary and tertiary instabilities, and (4) dependence of heat flux in terms of dimensionless parameters., Final journal version. Some clarifications and a new Fig. 4
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.