1. Quantification of Epoxyeicosatrienoic acids Enantiomers: The development of reliable and practical liquid chromatography mass Spectrometry assay.
- Author
-
A Isse F, Helal S, El-Sherbeni AA, Brocks DR, and El-Kadi AOS
- Subjects
- Stereoisomerism, Reproducibility of Results, Chromatography, Liquid methods, Linear Models, Limit of Detection, Humans, 8,11,14-Eicosatrienoic Acid analogs & derivatives, 8,11,14-Eicosatrienoic Acid chemistry, 8,11,14-Eicosatrienoic Acid analysis, 8,11,14-Eicosatrienoic Acid metabolism, Microsomes, Liver metabolism, Microsomes, Liver chemistry, Animals, Liquid Chromatography-Mass Spectrometry, Tandem Mass Spectrometry methods
- Abstract
Epoxyeicosatrienoic acids (EETs) are increasingly recognized as key metabolites in the arachidonic acid (AA) metabolic pathway. EETs are epoxy derivatives of AA with two chiral centers formed by cytochrome P450 (CYP) enzymes. EETs have reported biological activities as racemates; however, knowledge on specific optical isomers of EET is lacking. A main reason is the absence of practical assay to quantify EETs isomers associated with specific pathological conditions and enzymes. The reported underivatized chiral LC-MS/MS assays utilize different mobile phases and flow rates or required long run times to achieve separation of EET stereoisomers. Others incorporated a derivatization step before the separation of EETs in their assays. Therefore, the objective of this study was to develop and validate a stereoselective assay for the simultaneous quantitation of underivatized EET enantiomers using Liquid Chromatography Mass Spectrometry (LC-MS/MS) with an optimum baseline separation using binary mobile phase and gradient elution. Herein, we report the development and validation of an LC-MS/MS assay, and its application to quantify the formation of EET enantiomers mediated by human liver microsomes. Assay linearity extends over 10-600 ng/mL with r
2 > 0.99 for all EETs enantiomers. The inter-run accuracy was within ± 15 %, and precision was ≤ 15 %, and < 20 % for the LLOQ. The matrix effect for the current assay was within ≤ ±20 %, and the mean recovery for quantitative methods was 70-125 %. The assay proved to be reliable and practical for chiral analysis., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF