1. Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
- Author
-
Gu, Yihong, Fang, Cong, Bühlmann, Peter, and Fan, Jianqing
- Subjects
Mathematics - Statistics Theory ,Computer Science - Machine Learning ,Statistics - Methodology ,Statistics - Machine Learning ,62G08 - Abstract
Pursuing causality from data is a fundamental problem in scientific discovery, treatment intervention, and transfer learning. This paper introduces a novel algorithmic method for addressing nonparametric invariance and causality learning in regression models across multiple environments, where the joint distribution of response variables and covariates varies, but the conditional expectations of outcome given an unknown set of quasi-causal variables are invariant. The challenge of finding such an unknown set of quasi-causal or invariant variables is compounded by the presence of endogenous variables that have heterogeneous effects across different environments, including even one of them in the regression would make the estimation inconsistent. The proposed Focused Adversial Invariant Regularization (FAIR) framework utilizes an innovative minimax optimization approach that breaks down the barriers, driving regression models toward prediction-invariant solutions through adversarial testing. Leveraging the representation power of neural networks, FAIR neural networks (FAIR-NN) are introduced for causality pursuit. It is shown that FAIR-NN can find the invariant variables and quasi-causal variables under a minimal identification condition and that the resulting procedure is adaptive to low-dimensional composition structures in a non-asymptotic analysis. Under a structural causal model, variables identified by FAIR-NN represent pragmatic causality and provably align with exact causal mechanisms under conditions of sufficient heterogeneity. Computationally, FAIR-NN employs a novel Gumbel approximation with decreased temperature and stochastic gradient descent ascent algorithm. The procedures are convincingly demonstrated using simulated and real-data examples., Comment: 48 pages, 7 figures with appendix
- Published
- 2024