1. Characterizing the bond properties of automatically placed helical reinforcement in 3D printed concrete
- Author
-
Lauri Hass, F.P. Bos, T.A.M. Salet, 3D Concrete Printing, Concrete Structures, and EAISI High Tech Systems
- Subjects
General Materials Science ,Building and Construction ,Civil and Structural Engineering - Abstract
The incompatibility of 3D concrete printing (3DCP) with conventional reinforcement methods is well known. Recently, solutions have suggested the insertion of helical reinforcement rods through a screwing motion into the freshly printed material. The current study focuses on the bond properties of such reinforcement and its relation to placement time relative to the 3D printed concrete age, of which until now hardly any data exists. Confined pull-out tests and micro-computed tomography (μCT) scans were performed to characterize the time-dependent bond properties for automatically placed screw-type reinforcement in 3D printed concrete in the range of 0–200 min after material deposition. An experimental program was carried out using a gantry type 3D concrete printer and a robotic hand with the Automated Screwing Device to automate the reinforcement placement process. In total 200 specimens were produced and tested in pull-out. μCT scans were done on the specimens to quantify air content in the vicinity of the reinforcement, for every other time stamp. Two different screw geometries were used. A high mechanical interlock was achieved resulting in a high bond strength in confined pull-out tests. It was concluded from the confined pull-out tests that the pull-out performance is not influenced significantly by the time of application after mortar deposition in a time frame of up to 200 min. This firmly positions automatically applied helical reinforcement as a viable method to reinforce 3DCP structures.
- Published
- 2022
- Full Text
- View/download PDF