1. Studying knots in covers of the modular flow
- Author
-
Eldar, Sivan and Fahima, Stav
- Subjects
Mathematics - Geometric Topology ,Mathematics - Dynamical Systems ,37B99 - Abstract
In this paper we provide a combinatorial tool to help study some topological properties of modular knots. We construct templates for the infinitely many Anosov flows on the trefoil complement, which are lifts of the geodesic flow on the modular surface, by lifting Ghys' modular template using self-covering of the trefoil complement of order $6k+1$, for $k\in \mathbb{N}_{>0}$. This allows to study the knot properties of closed geodesics in these flows, and an explicit construction of an infinite family of links of two components with one of them being the trefoil, all commensurable to one another., Comment: 23 pages, 32 figures
- Published
- 2024