1. Transfer Clustering Ensemble Selection
- Author
-
Hau-San Wong, Zhiwen Yu, C. L. Philip Chen, Yifan Shi, Jane You, Yide Wang, Jun Zhang, South China University of Technology [Guangzhou] (SCUT), University of Macau (UMac), The Hong Kong Polytechnic University [Hong Kong] (POLYU), City University of Hong Kong [Hong Kong] (CUHK), Institut d'Électronique et des Technologies du numéRique (IETR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), 61751202, National Natural Science Foundation of China, 2017A030313355, Natural Science Foundation of Guangdong Province, G-YM05, Hong Kong Polytechnic University, Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme 2018, 201704030051, Guangzhou Science and Technology Planning Project, CityU 11300715, Research Grants Council of the Hong Kong, 152202/14E, Hong Kong General Research, Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), and Nantes Université (NU)-Université de Rennes 1 (UR1)
- Subjects
Imagination ,[SPI.OTHER]Engineering Sciences [physics]/Other ,Computer science ,media_common.quotation_subject ,02 engineering and technology ,computer.software_genre ,Clustering ensemble selection (CES) ,Search engine ,Redundancy (information theory) ,020204 information systems ,transfer learning ,0202 electrical engineering, electronic engineering, information engineering ,Electrical and Electronic Engineering ,Cluster analysis ,media_common ,multiobjective ,Ensemble selection ,Computer Science Applications ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,Human-Computer Interaction ,machine learning ,Control and Systems Engineering ,Task analysis ,020201 artificial intelligence & image processing ,Data mining ,Transfer of learning ,computer ,Software ,Information Systems - Abstract
International audience; Clustering ensemble (CE) takes multiple clusteringsolutions into consideration in order to effectively improve theaccuracy and robustness of the final result. To reduce redundancyas well as noise, a CE selection (CES) step is added to furtherenhance performance. Quality and diversity are two importantmetrics of CES. However, most of the CES strategies adoptheuristic selection methods or a threshold parameter setting toachieve tradeoff between quality and diversity. In this paper, wepropose a transfer CES (TCES) algorithm which makes use of therelationship between quality and diversity in a source dataset, andtransfers it into a target dataset based on three objective functions.Furthermore, a multiobjective self-evolutionary process isdesigned to optimize these three objective functions. Finally, weconstruct a transfer CE framework (TCE-TCES) based on TCESto obtain better clustering results. The experimental results on 12transfer clustering tasks obtained from the 20newsgroups datasetshow that TCE-TCES can find a better tradeoff between qualityand diversity, as well as obtaining more desirable clusteringresults.
- Published
- 2020
- Full Text
- View/download PDF