1. Laboratory Experiments on the Radiation Astrochemistry of Water Ice Phases
- Author
-
Duncan V. Mifsud, Perry A. Hailey, Péter Herczku, Zoltán Juhász, Sándor T. S. Kovács, Béla Sulik, Sergio Ioppolo, Zuzana Kaňuchová, Robert W. McCullough, Béla Paripás, and Nigel J. Mason
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,FOS: Physical sciences ,Astrophysics - Astrophysics of Galaxies ,Atomic and Molecular Physics, and Optics ,Condensed Matter - Other Condensed Matter ,Astrophysics of Galaxies (astro-ph.GA) ,11000/13 ,11000/11 ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Other Condensed Matter (cond-mat.other) ,QB ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Water (H2O) ice is ubiquitous component of the universe, having been detected in a variety of interstellar and Solar System environments where radiation plays an important role in its physico-chemical transformations. Although the radiation chemistry of H2O astrophysical ice analogues has been well studied, direct and systematic comparisons of different solid phases are scarce and are typically limited to just two phases. In this article, we describe the results of an in-depth study of the 2 keV electron irradiation of amorphous solid water (ASW), restrained amorphous ice (RAI) and the cubic (Ic) and hexagonal (Ih) crystalline phases at 20 K so as to further uncover any potential dependence of the radiation physics and chemistry on the solid phase of the ice. Mid-infrared spectroscopic analysis of the four investigated H2O ice phases revealed that electron irradiation of the RAI, Ic, and Ih phases resulted in their amorphization (with the latter undergoing the process more slowly) while ASW underwent compaction. The abundance of hydrogen peroxide (H2O2) produced as a result of the irradiation was also found to vary between phases, with yields being highest in irradiated ASW. This observation is the cumulative result of several factors including the increased porosity and quantity of lattice defects in ASW, as well as its less extensive hydrogen-bonding network. Our results have astrophysical implications, particularly with regards to H2O-rich icy interstellar and Solar System bodies exposed to both radiation fields and temperature gradients., Published in the European Physical Journal D: Atomic, Molecular, Optical, and Plasma Physics
- Published
- 2022