5 results on '"白亮亮"'
Search Results
2. 牛至精油微胶囊的制备及其在 抗菌食品包装纸中的应用.
- Author
-
潘高峰, 宋 阳, 白亮亮, 李永辉, and 宁语苹
- Subjects
CORE materials ,COMPOSITE coating ,ESSENTIAL oils ,STAPHYLOCOCCUS aureus ,OREGANO ,FOOD packaging ,ACTIVE food packaging - Abstract
Copyright of China Pulp & Paper is the property of China Pulp & Paper Magazines Publisher and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2022
- Full Text
- View/download PDF
3. 高速公路机电工程施工质量的控制对策分析.
- Author
-
白亮亮
- Abstract
Copyright of Mechanical & Electronic Control Engineering is the property of Omniscient Pte. Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2022
- Full Text
- View/download PDF
4. 基于多源信息的水资源立体监测研究综述.
- Author
-
岩腊, 龙笛, 白亮亮, 张才金, 韩忠颖, 李兴东, 王文, 申邵洪, and 冶运涛
- Subjects
WATER efficiency ,WATER supply ,WATER management ,HYDROLOGIC cycle ,WATER quality ,WATER quality management ,WATER storage - Abstract
Copyright of Journal of Remote Sensing is the property of Editorial Office of Journal of Remote Sensing & Science Publishing Co. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2020
- Full Text
- View/download PDF
5. 基于地面红外检测系统验证的灌区地表温度遥感反演.
- Author
-
蔡甲冰, 白亮亮, 许 迪, 李益农, and 刘 钰
- Abstract
It is an important development trend in modern agriculture to utilize the remote sensing data and real-time field monitoring data for irrigation management, and to realize the agriculture informatization by using precision information technology. In this paper, in order to validate land surface temperature by remote sensing inversion, we designed and installed 4 sets of monitoring systems to collect field data on line, including crop canopy temperature, air temperature, air humidity, wind speed, solar radiation, soil moisture/temperature, and so on. The Jiefangzha Irrigation Region was selected as one of the research area, situated in the western part of the Hetao Irrigation District (4025N, 10709E). The other one was in the Daxing Experimental Station, Beijing (3937N, 11625E). The instruments were installed in the main agriculture crop fields (maize, spring wheat and sunflower) in Jiefangzha Irrigation Region, Inner Mongolia and in the rotation field of winter wheat-summer maize (Daxing Experimental Station, Beijing). The land surface temperature in the survey area was obtained by the infrared remote sensing inversion of Landsat7 and Landsat 8 in 2015. The land surface emissivity was determined by 2 methods, a simple estimation by Sobrino method and the Qin Zhihao method. Five pixels with 30 m×30 m each was selected around the monitoring system. The observed data at 11:00 and 12:00 by the instrument in the field was compared with the inversion results from remote sensing data. The results showed that the land surface temperature by the remote sensing inversion could agree well with the field crop canopy temperature. The monitoring data in situ could be the representative of the surrounding condition, which was about 90 m×90 m (5 pixels). The calculation of land surface emissivity based on Qin Zhihao method was suitable for different crops. The statistics parameters based on the Qin Zhihao method made a good performance in the sunflower field in 2015 with the coefficient of determination (R2), root mean square error (RMSE), relative error (RE) and Willmott index of 0.85, 1.97℃, 6.5% and 0.94, respectively. In the maize field, it was suitable in using the Sobrino method, with the R2, RMSE, RE and Willmott index of 0.76, 2.32℃, 7.8% and 0.92, respectively. The 2 methods had no significant difference in Daxing Station, Beijing. But the Sobrino method was better for the spring wheat in Jiefangzha Irrigation Region. The layout scheme and reasonable numbers of the monitoring systems, the drought diagnosis and irrigation management using multiple source data and the optimization and improvement of the monitoring system would be the key points to be studied in the future. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.