Aimed at the complicated motion of the downhole drill string and based on the existing dynamics theory, the longitudinal and lateral coupled vibration model for the drill strings was established, and the numerical solution was obtained. According to the actual working condition of the downhole drill string, the entire drill string was regarded as the object of study. The concrete expressions of the dynamic stiffness, dynamic damping and the 1st 2 orders of natural frequencies were deduced with the analytical method and the dimensionless method in view of the coupled vibration characteristics of the downhole drill string. The research findings reveal that when the vibration frequency of the downhole drill string increases, the dynamic stiffness will periodically change with amplitude attenuation and the dynamic damping will periodically change with amplitude enhancement. The greater the length and the cross-sectional area of the downhole drill string are, the smaller the vibration amplitudes of the dynamic stiffness and the dynamic damping will be. Moreover, the Poisson's ratio of the downhole drill string has no effect on the dynamic stiffness, the dynamic damping and the 1st 2 orders of natural frequencies. Meanwhile, the 2nd-order natural frequency of the drill string is always greater than the 1st. The proposed methods and model provide theoretical references and practical significances for further analysis and design optimization of the bottom-hole assembly (BHA). [ABSTRACT FROM AUTHOR]