This study investigated the effects of climatic factors on radial growth of Picea schrenkiana var. tianschanica at various altitudes in Central Tianshan Mountains. Tree-ring core samples were collected at three altitudinal levels (1900, 2 200, 2 500 m) within the practice forest of Xinjiang Agricultural University. Dendrochronological techniques, including temperature, precipitation, the standardized precipitation evapotranspiration index, and the Palmer drought severity index, were employed to analyze meteorological data from 1955 to 2022. The results indicate that at low altitudes, tree-ring width is positively correlated with previous June and current June-August temperatures, previous August precipitation, and the current June-September Palmer drought severity index (P<0.05). At mid-altitudes, tree ring width was positively correlated with the previous June temperature, August precipitation, and previous June-August standardized precipitation evapotranspiration index (P<0.05). At high altitudes, tree-ring width was negatively correlated with the current January temperature and previous November to the current March standardized precipitation evapotranspi- ration index (P<0.05), but positively correlated with the current June-July precipitation (P<0.05). Therefore, in the forest, P. schrenkiana var. tianschanica growth is closely linked to the environmental moisture conditions, which vary with altitude. Precipi- tation is pivotal for radial growth of P. schrenkiana var. tianschanica at low altitudes, whereas temperature and precipitation jointly affected growth at mid-altitudes, with temperature exerting a greater impact than precipitation on radial growth at higher altitudes. [ABSTRACT FROM AUTHOR]