32 results on '"Šimunović J"'
Search Results
2. Sterilization solutions for aseptic processing using a continuous flow microwave system
- Author
-
Coronel, P., Simunovic, J., Sandeep, K.P., Cartwright, G.D., and Kumar, P.
- Published
- 2008
- Full Text
- View/download PDF
3. Replication of fifteen loci involved in human plasma protein N-glycosylation in 4,802 samples from four cohorts
- Author
-
Sharapov, S.Z., Shadrina, A.S., Tsepilov, Y.A., Elgaeva, E.E., Tiys, E.S., Feoktistova, S.G., Zaytseva, O.O., Vučković, F., Cuadrat, R., Jäger, S., Wittenbecher, C., Karssen, L.C., Timofeeva, M., Tillin, T., Trbojević-Akmačić, I., Štambuk, T., Rudman, N., Krištić, J., Šimunović, J., Momčilović, A., Vilaj, M., Jurić, J., Slana, A., Gudelj, I., Klarić, T., Puljak, L., Skelin, A., Kadić, A.J., Van Zundert, J., Chaturvedi, N., Campbell, H., Dunlop, M., Farrington, S.M., Doherty, M., Dagostino, C., Gieger, C., Allegri, M., Williams, F., Schulze, M.B., Lauc, G., and Aulchenko, Y.S.
- Subjects
Genetic Association Study ,Glycosylation ,Locus ,Replication ,Total Plasma N-glycome - Abstract
Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4,802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the sixteen loci reported previously, fifteen were replicated in our study. For the remaining locus (near the KREMEN1 gene) the replication power was low, and hence replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The fifteen replicated loci present a good target for further functional studies. Among these, eight genes encode glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4, and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo.
- Published
- 2021
4. Comparison of Sensory, Microbiological, and Biochemical Parameters of Microwave Versus Indirect UHT Fluid Skim Milk During Storage
- Author
-
Clare, D.A., Bang, W.S., Cartwright, G., Drake, M.A., Coronel, P., and Simunovic, J.
- Published
- 2005
- Full Text
- View/download PDF
5. 9 - Developments in aseptic processing
- Author
-
Sandeep, K.P., Simunovic, J., and Swartzel, K.R.
- Published
- 2004
- Full Text
- View/download PDF
6. A 2-year calorie restriction intervention reduces glycomic biological age biomarkers.
- Author
-
Pribić T, Das JK, Đerek L, Belsky DW, Orenduff M, Huffman KM, Kraus WE, Deriš H, Šimunović J, Štambuk T, Hodžić AF, Kraus VB, Das SK, Racette SB, Banskota N, Ferruci L, Pieper C, Lewis NE, Lauc G, and Krishnan S
- Abstract
Background/objective: In a subset of participants from the CALERIE
™ Phase 2 study we evaluated the effects of 2y of ~25% Calorie Restriction (CR) diet on IgG N-glycosylation (GlycAge), plasma and complement C3 N-glycome as markers of aging and inflammaging., Methods: Plasma samples from 26 participants in the CR group who completed the CALERIE2 trial and were deemed adherent to the intervention (~>10 % CR at 12 mo) were obtained from the NIA AgingResearchBiobank. Glycomic investigations using UPLC or LC-MS analyses were conducted on samples from baseline (BL), mid-intervention (12 mo) and post-intervention (24 mo), and changes resulting from the 2y CR intervention were examined. In addition, anthropometric, clinical, metabolic, DNA methylation (epigenetic) and skeletal muscle transcriptomic data were analyzed to identify aging-related changes that occurred in tandem with the N-glycome changes., Results: Following the 2y CR intervention, IgG galactosylation was higher at 24mo compared to BL (p = 0.051), digalactosylation and GlycAge (the IgG-based surrogate for biological age) were not different between BL and 12mo or BL and 24mo, but increased between 12mo and 24mo (p = 0.016, 0.027 respectively). GlycAge was also positively associated with TNF-α and ICAM-1 (p=0.030, p=0.017 respectively). Plasma highly branched glycans were decreased by the 2y intervention (BL vs 24 mo: p=0.013), but both plasma and IgG bisecting GlcNAcs were increased (BL vs 24mo: p<0.001, p = 0.01 respectively). Furthermore, total complement C3 protein concentrations were reduced (BL vs 24mo: p <0.001), as were Man9 glycoforms (BL vs 24mo: p<0.001), and Man10 (which is glucosylated) C3 glycoforms (BL vs 24mo: p = 0.046)., Conclusions: 24-mos of CR was associated with several favorable, anti-aging, anti-inflammatory changes in the glycome: increased galactosylation, reduced branching glycans, and reduced GlycAge. These promising CR effects were accompanied by an increase in bisecting GlcNAc, a known pro-inflammatory biomarker. These intriguing findings linking CR, clinical, and glycomic changes may be anti-aging and inflammatory, and merit additional investigation.- Published
- 2024
- Full Text
- View/download PDF
7. A Comprehensive Review on Polyphenols of White Wine: Impact on Wine Quality and Potential Health Benefits.
- Author
-
Ćorković I, Pichler A, Šimunović J, and Kopjar M
- Subjects
- Humans, Neuroprotective Agents pharmacology, Neuroprotective Agents chemistry, Animals, Cardiotonic Agents pharmacology, Cardiotonic Agents chemistry, Anti-Infective Agents pharmacology, Anti-Infective Agents chemistry, Wine analysis, Polyphenols analysis, Polyphenols chemistry, Polyphenols pharmacology, Antioxidants pharmacology, Antioxidants chemistry, Antioxidants analysis
- Abstract
Polyphenols are associated with various beneficial health effects. These compounds are present in edible plants such as fruits and vegetables, and the human body absorbs them through the consumption of foods and beverages. Wine is recognized as a rich source of these valuable compounds, and it has been well established that polyphenols present in red wine possess numerous biologically active functions related to health promotion. Therefore, most scientific research has been focused on red wine polyphenols, whereas white wine polyphenols have been neglected. This review presents the summarized information about the most abundant polyphenols in white wines, their concentration, their impact on wine quality and their potential health effects, such as neuroprotective and cardioprotective activities, antioxidant potential, antimicrobial activity and their positive effects on lipids. These findings are an effort to help compensate for the relative lack of relevant data in the scientific literature regarding white wine polyphenols.
- Published
- 2024
- Full Text
- View/download PDF
8. Automated high throughput IgG N-glycosylation sample preparation method development on the Tecan Freedom EVO platform.
- Author
-
Rapčan B, Hanić M, Plavša B, Šimunović J, Štambuk J, Vučković F, Trbojević-Akmačić I, Novokmet M, Lauc G, and Razdorov G
- Subjects
- Humans, Glycosylation, Glycomics methods, High-Throughput Screening Assays, Automation, Glycoproteins, Immunoglobulin G blood, Polysaccharides
- Abstract
Introduction: Glycomics, focusing on the role of glycans in biological processes, particularly their influence on the folding, stability and receptor interactions of glycoconjugates like antibodies, is vital for our understanding of biology. Changes in immunoglobulin G (IgG) N-glycosylation have been associated with various physiological and pathophysiological conditions. Nevertheless, time-consuming manual sample preparation is one of the limitations in the glycomics diagnostic implementation. The study aimed to develop an automated method for sample preparation on the Tecan Freedom Evo 200 platform and compare its efficiency and precision with the manual counterpart., Materials and Methods: The initial method development included 32 pooled blood plasma technical replicates. An additional 24 pooled samples were used in the method comparison along with 78 random duplicates of plasma samples collected from 10,001 Dalmatians biobank to compare the manual and automated methods., Results: The development resulted in a new automated method. For the automated method, glycan peaks comprising 91% of the total sample glycan showed a variation of less than 5% while 92% of the total sample showed a variation of less than 5% for the manual method. The results of the Passing-Bablok regression indicated no differences between the automated and manual methods for 12 glycan peaks (GPs). However, for 8 GPs systematic difference was present, while both systematic and proportional differences were present for four GPs., Conclusions: The developed automated sample preparation method for IgG glycan analysis reduced exposure to hazardous chemicals and offered a simplified workflow. Despite slight differences between the methods, the new automated method showed high precision and proved to be highly comparable to its manual counterpart., Competing Interests: Potential conflict of interest None declared., (Copyright Croatian Society of Medical Biochemistry and Laboratory Medicine.)
- Published
- 2024
- Full Text
- View/download PDF
9. Probing Blood Plasma Protein Glycosylation with Infrared Spectroscopy.
- Author
-
Voronina L, Fleischmann F, Šimunović J, Ludwig C, Novokmet M, and Žigman M
- Abstract
The health state of an individual is closely linked to the glycosylation patterns of his or her blood plasma proteins. However, obtaining this information requires cost- and time-efficient analytical methods. We put forward infrared spectroscopy, which allows label-free analysis of protein glycosylation but so far has only been applied to analysis of individual proteins. Although spectral information does not directly provide the molecular structure of the glycans, it is sensitive to changes therein and covers all types of glycosidic linkages. Combining single-step ion exchange chromatography with infrared spectroscopy, we developed a workflow that enables the separation and analysis of major protein classes in blood plasma. Our results demonstrate that infrared spectroscopy can identify different patterns and global levels of glycosylation of intact plasma proteins. To showcase the strengths and limitations of the proposed approach, we compare the glycoforms of human and bovine alpha-1-acid glycoproteins, which exhibit highly variable global levels of glycosylation. To independently evaluate our conclusions, the glycan moieties of human alpha-1-acid glycoprotein were further analyzed using an established glycomics workflow. Importantly, the chromatographic separation of blood plasma improves the detection of aberrant glycoforms of a given protein as compared to infrared spectroscopy of bulk plasma. The presented approach allows a time-efficient comparison of glycosylation patterns of multiple plasma proteins, opening new avenues for biomedical probing.
- Published
- 2024
- Full Text
- View/download PDF
10. Dairy-Protein-Based Aggregates as Additives Enriched with Tart Cherry Polyphenols and Flavor Compounds.
- Author
-
Kopjar M, Buljeta I, Ćorković I, Kelemen V, Pichler A, Ivić I, and Šimunović J
- Abstract
Nowadays, the development of innovative food products with positive health effects is on the rise. Consequently, the aim of this study was a formulation of aggregates based on tart cherry juice and dairy protein matrix to investigate whether different amounts (2% and 6%) of protein matrix have an impact on the adsorption of polyphenols as well as on the adsorption of flavor compounds. Formulated aggregates were investigated through high-performance liquid chromatography, spectrophotometric methods, gas chromatography and Fourier transform infrared spectrometry. The obtained results revealed that with an increase in the amount of protein matrix used for the formulation of aggregates, a decrease in the adsorption of polyphenols occurred, and, consequently, the antioxidant activity of the formulated aggregates was lower. The amount of protein matrix additionally affected the adsorption of flavor compounds; thus the formulated aggregates differed in their flavor profiles in comparison with tart cherry juice. Adsorption of both phenolic and flavor compounds caused changes in the protein structure, as proven by recording IR spectra. Formulated dairy-protein-based aggregates could be used as additives which are enriched with tart cherry polyphenols and flavor compounds.
- Published
- 2023
- Full Text
- View/download PDF
11. Comparative analysis of transferrin and IgG N-glycosylation in two human populations.
- Author
-
Trbojević-Akmačić I, Vučković F, Pribić T, Vilaj M, Černigoj U, Vidič J, Šimunović J, Kępka A, Kolčić I, Klarić L, Novokmet M, Pučić-Baković M, Rapp E, Štrancar A, Polašek O, Wilson JF, and Lauc G
- Subjects
- Humans, Glycosylation, High-Throughput Screening Assays, Polysaccharides analysis, Immunoglobulin G blood, Immunoglobulin G chemistry, Protein Processing, Post-Translational, Transferrin chemistry, Transferrin isolation & purification
- Abstract
Human plasma transferrin (Tf) N-glycosylation has been mostly studied as a marker for congenital disorders of glycosylation, alcohol abuse, and hepatocellular carcinoma. However, inter-individual variability of Tf N-glycosylation is not known, mainly due to technical limitations of Tf isolation in large-scale studies. Here, we present a highly specific robust high-throughput approach for Tf purification from human blood plasma and detailed characterization of Tf N-glycosylation on the level of released glycans by ultra-high-performance liquid chromatography based on hydrophilic interactions and fluorescence detection (HILIC-UHPLC-FLD), exoglycosidase sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We perform a large-scale comparative study of Tf and immunoglobulin G (IgG) N-glycosylation analysis in two human populations and demonstrate that Tf N-glycosylation is associated with age and sex, along with multiple biochemical and physiological traits. Observed association patterns differ compared to the IgG N-glycome corroborating tissue-specific N-glycosylation and specific N-glycans' role in their distinct physiological functions., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
12. High-throughput immunoaffinity enrichment and N-glycan analysis of human plasma haptoglobin.
- Author
-
Šimunović J, Gašperšič J, Černigoj U, Vidič J, Štrancar A, Novokmet M, Razdorov G, Pezer M, Lauc G, and Trbojević-Akmačić I
- Subjects
- Humans, Chromatography, Liquid, Glycosylation, Polysaccharides chemistry, Haptoglobins, Spectrometry, Mass, Electrospray Ionization
- Abstract
Haptoglobin (Hp) is a positive acute phase protein, synthesized in the liver, with four N-glycosylation sites carrying mainly complex type N-glycans. Its glycosylation is altered in different types of diseases but still has not been extensively studied mainly due to analytical challenges, especially the lack of a fast, efficient, and robust high-throughput Hp isolation procedure. Here, we describe the development of a high-throughput method for Hp enrichment from human plasma, based on monolithic chromatographic support in immunoaffinity mode and downstream Hp N-glycome analysis by hydrophilic interaction ultrahigh-performance liquid chromatography with fluorescent detection (HILIC-UHPLC-FLR). Chromatographic monolithic supports in a 96-well format enable fast, efficient, and robust Hp enrichment directly from diluted plasma samples. The N-glycome analysis demonstrated that a degree of Hp deglycosylation differs depending on the conditions used for N-glycan release and on the specific glycosylation site, with Asn 241 being the most resistant to deglycosylation under tested conditions. HILIC-UHPLC-FLR analysis enables robust quantification of 28 individual chromatographic peaks, in which N-glycan compositions were determined by UHPLC coupled to electrospray ionization quadrupole time of flight mass spectrometry. The developed analytical approach enables fast evaluation of total Hp N-glycosylation and is applicable in large-scale studies., (© 2022 Wiley Periodicals LLC.)
- Published
- 2023
- Full Text
- View/download PDF
13. Beneficial Effects of Red Wine Polyphenols on Human Health: Comprehensive Review.
- Author
-
Buljeta I, Pichler A, Šimunović J, and Kopjar M
- Abstract
Polyphenols are secondary plant metabolites synthesized during the development of the grape berry as a response to stress conditions. They are important constituents in red wines that contribute to the sensory properties and antioxidant activity of wines. Due to the development of highly sophisticated analytical devices, it is now possible to characterize the structure of highly polymerized polyphenols and obtain a full polyphenol profile of red wines. Red wine polyphenols include the ones present in grapes as well as new polyphenol products formed during the winemaking process. Among them, the most important groups and their representatives are flavanols (catechin), stilbenes ( trans -resveratrol), flavonols (quercetin) and hydroxybenzoic acids (gallic acid). It is known that polyphenols exhibit beneficial effects on human health, such as anti-inflammatory, anticarcinogenic and cardio-protective effects. Many studies have been conducted on the health effects of red wine polyphenols in cancer chemopreventive activities, neuroprotective effects and impact on cardiovascular diseases, gut microbiota in humans, etc. This review will provide major scientific findings on the impact of red wine polyphenols on human health as well as a review of polyphenols present in red wines and their main features.
- Published
- 2023
- Full Text
- View/download PDF
14. Evaluation of Chokeberry/Carboxymethylcellulose Hydrogels with the Addition of Disaccharides: DART-TOF/MS and HPLC-DAD Analysis.
- Author
-
Ćorković I, Rajchl A, Škorpilová T, Pichler A, Šimunović J, and Kopjar M
- Subjects
- Humans, Anthocyanins analysis, Disaccharides, Chromatography, High Pressure Liquid, Plant Extracts chemistry, Fruit chemistry, Polyphenols chemistry, Antioxidants chemistry, Carboxymethylcellulose Sodium
- Abstract
With the growing awareness of the importance of a healthy diet, the need for the development of novel formulations is also on the rise. Chokeberry products are popular among consumers since they are a rich source of polyphenols that are responsible for antioxidant activity and other positive effects on human health. However, other natural food ingredients, such as disaccharides, can affect their stability. The aim of this study was to investigate the influence of disaccharides addition on the polyphenol composition of chokeberry hydrogels. Hydrogels were prepared from chokeberry juice and 2% of carboxymethylcellulose (CMC) with the addition of 30%, 40%, or 50% of disaccharides (sucrose or trehalose). Samples were analyzed using DART-TOF/MS. The method was optimized, and the fingerprints of the mass spectra have been statistically processed using PCA analysis. Prepared samples were evaluated for total polyphenols, monomeric anthocyanins, and antioxidant activity (FRAP, CUPRAC, DPPH, ABTS assays) using spectrophotometric methods. Individual polyphenols were evaluated using HPLC-DAD analysis. Results showed the addition of disaccharides to 2% CMC hydrogels caused a decrease of total polyphenols. These findings confirm proper formulation is important to achieve appropriate retention of polyphenols.
- Published
- 2022
- Full Text
- View/download PDF
15. Application of Citrus and Apple Fibers for Formulation of Quercetin/Fiber Aggregates: Impact of Quercetin Concentration.
- Author
-
Buljeta I, Ćorković I, Pichler A, Šimunović J, and Kopjar M
- Abstract
Among flavonoids, quercetin has gained special attention due to its positive biological activities. Quercetin's disadvantages, such as its hydrophobic nature, poor solubility, and permeability, could be overcome by complexation with different polymers. Dietary fibers are known as carriers of polyphenols, which can protect them from environmental conditions and thus allow them to be absorbed. In this study, apple and citrus fibers (as applicable food by-products) were used as carriers of quercetin. A constant amount of fibers (1%) and different concentrations of quercetin solution (5 mM, 10 mM, and 20 mM) were complexed. Obtained fiber aggregates were subjected to HPLC to determine the quercetin concentration and antioxidant activity of aggregates (ABTS, DPPH, FRAP, and CUPRAC assays). IR spectra were recorded to confirm complexation of quercetin with selected fibers, and an additional DSC study was performed to evaluate the thermal stability of fiber aggregates. The results of HPLC analysis showed that quercetin had higher affinity towards apple fiber than citrus fiber, without proportional trends of adsorption. Consequently, apple fiber aggregates had higher antioxidant potential than citrus fiber aggregates. FTIR-ATR analysis showed the formation of new bands and the loss of existing bands when quercetin was present. Adsorption of quercetin also had an impact on the thermal stability of formulated fiber aggregates. For apple fiber, this impact was negative, while for citrus fiber, the impact was positive. These results could contribute to greater understanding of quercetin's behavior during the preparation of food additives based on polyphenols and fibers.
- Published
- 2022
- Full Text
- View/download PDF
16. Dietary Polyphenols as Natural Inhibitors of α-Amylase and α-Glucosidase.
- Author
-
Ćorković I, Gašo-Sokač D, Pichler A, Šimunović J, and Kopjar M
- Abstract
It is well known that carbohydrates are the main source of calories in most diets. However, by inhibiting carbohydrases, intake of calories is reduced and weight loss is improved. α-amylase is an enzyme that hydrolyses α-1,4 glycosidic linkages of α-linked polysaccharides, resulting in low-molecular-weight products such as glucose, maltose and maltotriose, while α-glucosidase catalyzes the hydrolysis of nonreducing α-1,4-linked glucose moieties from disaccharides or oligosaccharides. Currently, one of the most common nutritional disorders in the world is hyperglycemia. One of the new therapeutic approaches to treat this disease is the application of natural inhibitors, such as polyphenols, that control starch digestion and regulate blood glucose level. Dietary polyphenols showed potential inhibitory activity against α-amylase and α-glucosidase and this review summarizes the recently published literature that studied inhibition mechanisms and the structure-activity relationship between individual dietary polyphenols and mentioned digestive enzymes. It is known that higher binding interactions cause higher inhibitory activities; thus, different polyphenols can affect different steps in the digestion of polysaccharides. The aim of this review is to clarify these mechanisms and to introduce polyphenol-rich functional foods as potential tools for the inhibition of α-amylase and α-glucosidase.
- Published
- 2022
- Full Text
- View/download PDF
17. Polysaccharides as Carriers of Polyphenols: Comparison of Freeze-Drying and Spray-Drying as Encapsulation Techniques.
- Author
-
Buljeta I, Pichler A, Šimunović J, and Kopjar M
- Subjects
- Freeze Drying, Humans, Polysaccharides, Spray Drying, Antioxidants, Polyphenols
- Abstract
Polyphenols have received great attention as important phytochemicals beneficial for human health. They have a protective effect against cardiovascular disease, obesity, cancer and diabetes. The utilization of polyphenols as natural antioxidants, functional ingredients and supplements is limited due to their low stability caused by environmental and processing conditions, such as heat, light, oxygen, pH, enzymes and so forth. These disadvantages are overcome by the encapsulation of polyphenols by different methods in the presence of polyphenolic carriers. Different encapsulation technologies have been established with the purpose of decreasing polyphenol sensitivity and the creation of more efficient delivery systems. Among them, spray-drying and freeze-drying are the most common methods for polyphenol encapsulation. This review will provide an overview of scientific studies in which polyphenols from different sources were encapsulated using these two drying methods, as well as the impact of different polysaccharides used as carriers for encapsulation.
- Published
- 2022
- Full Text
- View/download PDF
18. Fortification of Pectin/Blackberry Hydrogels with Apple Fibers: Effect on Phenolics, Antioxidant Activity and Inhibition of α-Glucosidase.
- Author
-
Kopjar M, Ćorković I, Buljeta I, Šimunović J, and Pichler A
- Abstract
The objective of this study was to prepare hydrogels based on pectin and blackberry juice and additionally to fortify those hydrogels with apple fiber. For that purpose, two types of pectin (low methoxylated and high methoxylated) were used, and fortification was conducted with the addition of 10% of apple fiber. The hydrogels were evaluated for phenolic compounds, antioxidant activity and inhibition of α-glucosidase. In addition, the stability of these parameters after 8 months of storage was evaluated. Pectin type and addition of apple fiber had an impact on investigated parameters. Low methoxylated pectin hydrogels had a higher concentration of anthocyanins than high methoxylated pectin hydrogels, while the addition of apple fibers caused a decrease in anthocyanin content. However, fortified hydrogels had higher antioxidant activity due to the presence of phenolics from apple fibers. The results showed that anthocyanins were more favorable in inhibiting α-glucosidase because samples with higher anthocyanins concentration had lower IC
50 values. Obtained hydrogels can be used as intermediate products or ingredients (like fruit fillings or spreads) for the improvement or development of novel food products to increase their fiber content and antioxidant potential.- Published
- 2022
- Full Text
- View/download PDF
19. Encapsulation of Blackberry Phenolics and Volatiles Using Apple Fibers and Disaccharides.
- Author
-
Kopjar M, Buljeta I, Nosić M, Ivić I, Šimunović J, and Pichler A
- Abstract
The objective of this study was to determine the effect of disaccharides on the encapsulation of the phenolics and volatiles of blackberry juice with the use of apple fiber. For this purpose, apple fiber/blackberry microparticles were prepared as the control, as well as microparticles additionally containing disaccharides, i.e., sucrose or trehalose. Fiber:disaccharide ratios were 1:0.5, 1:1, and 1:2. Formulated microparticles were characterized for total phenolics, proanthocyanidins, individual phenolics, antioxidant activity, flavor profiles, and color parameters. Both applied disaccharides affected the encapsulation of phenolics and volatiles by the apple fibers. Control microparticles had a higher content of phenolics than microparticles with disaccharides. Comparing disaccharides, the microparticles with trehalose had a higher content of phenolics than the ones containing sucrose. The amount of proanthocyanidins in the control microparticles was 47.81 mg PB2/100 g; in trehalose, the microparticles ranged from 39.88 to 42.99 mg PB2/100 g, and in sucrose, the microparticles ranged from 12.98 to 26.42 mg PB2/100 g, depending on the fiber:disaccharide ratio. Cyanidin-3-glucoside was the dominant anthocyanin. Its amount in the control microparticles was 151.97 mg/100 g, while in the trehalose microparticles, this ranged from 111.97 to 142.56 mg /100 g and in sucrose microparticles, from 100.28 to 138.74 mg /100 g. On the other hand, microparticles with disaccharides had a higher content of volatiles than the control microparticles. Trehalose microparticles had a higher content of volatiles than sucrose ones. These results show that the formulation of microparticles, i.e., the selection of carriers, had an important role in the final quality of the encapsulates.
- Published
- 2022
- Full Text
- View/download PDF
20. Apple Fibers as Carriers of Blackberry Juice Polyphenols: Development of Natural Functional Food Additives.
- Author
-
Buljeta I, Nosić M, Pichler A, Ivić I, Šimunović J, and Kopjar M
- Subjects
- Antioxidants pharmacology, Dietary Fiber analysis, Food Additives, Fruit chemistry, Functional Food, Polyphenols analysis, Malus, Rubus
- Abstract
Blackberry polyphenols possess various health-promoting properties. Since they are very sensitive to environmental conditions such as the presence of light, oxygen and high temperatures, the application of such compounds is restricted. Fibers are recognized as efficient carriers of polyphenols and are often used in polyphenols encapsulation. In the present study, the ability of apple fiber to adsorb blackberry juice polyphenols was examined. Freeze-dried apple fiber/blackberry juice complexes were prepared with different amounts of fibers (1%, 2%, 4%, 6%, 8% and 10%) and a constant amount of blackberry juice. Polyphenol profile, antioxidant activity, inhibition of the α-amylase, color parameters, as well as the IR spectra, of the obtained complexes were assessed. The results showed a negative effect of higher amounts of fiber (more than 2%) on the adsorption of polyphenols and the antioxidant activity of complexes. With the proper formulation, apple fibers can serve as polyphenol carriers, and thus the application as novel food additives can be considered.
- Published
- 2022
- Full Text
- View/download PDF
21. Adsorption of Quercetin on Brown Rice and Almond Protein Matrices: Effect of Quercetin Concentration.
- Author
-
Kopjar M, Buljeta I, Ćorković I, Pichler A, and Šimunović J
- Abstract
Plant-based proteins are very often used as carriers of different phenolic compounds. For that purpose, complexation of quercetin with almond and brown rice protein matrices was investigated. The amount of protein matrices was constant, while the concentration of quercetin varied (1 mM, 2 mM or 5 mM) during complexation. Dried complexes were investigated for quercetin amount (HPLC analysis) and antioxidant activity (DPPH, FRAP and CUPRAC methods). Additionally, complexation was proven by DSC and FTIR-ATR screening. An increase in the concentration of quercetin in the initial complexation mixture resulted in the increase in the adsorption of quercetin onto protein matrices. For the brown rice protein matrices, this increase was proportional to the initial quercetin concentration. Adsorption of quercetin caused the change in thermal stability of microparticles in comparison to corresponding protein matrices that have been proven by DSC. FTIR-ATR analysis revealed structural changes on microparticles upon adsorption of quercetin.
- Published
- 2022
- Full Text
- View/download PDF
22. Microencapsulation of Chokeberry Polyphenols and Volatiles: Application of Alginate and Pectin as Wall Materials.
- Author
-
Ćorković I, Pichler A, Ivić I, Šimunović J, and Kopjar M
- Abstract
Microencapsulation is a rapidly evolving technology that allows preservation of various high-value, but unstable, compounds, such as polyphenols and volatiles. These components of chokeberry juice are reported to have various health-promoting properties. In the present study, hydrogel beads with alginate or alginate and pectin as wall materials and chokeberry juice as active agent were prepared using Encapsulator B-390. The effects of different compositions of wall material as well as the duration of complexation (30 or 90 min) with hardening solution on microencapsulation of chokeberry polyphenols and volatiles were investigated. Spectrophotometric and HPLC analyses showed that beads with pectin addition contained higher concentrations of polyphenols and anthocyanins compared to those prepared with alginate. Antioxidant activities evaluated with FRAP, CUPRAC, DPPH, and ABTS assays followed the same trend. Encapsulation of volatiles which were determined using GC-MS analysis also depended on the composition of hydrogel beads and in some cases on the time of complexation. Results of this study showed that the selection of the wall material is a relevant factor determining the preservation of polyphenols and volatiles. The incorporation of bioactive compounds in hydrogel beads opens up a wide range of possibilities for the development of functional and innovative foods.
- Published
- 2021
- Full Text
- View/download PDF
23. Encapsulation of Cinnamic Acid on Plant-Based Proteins: Evaluation by HPLC, DSC and FTIR-ATR.
- Author
-
Kopjar M, Buljeta I, Jelić I, Kelemen V, Šimunović J, and Pichler A
- Abstract
Plant-based protein matrices can be used for the formulation of delivery systems of cinnamic acid. Pumpkin, pea and almond protein matrices were used for the formulation of dried complexes. The matrices were used in varying amounts (1%, 2%, 5% and 10%) whilst the amount of cinnamic acid was maintained constant. The obtained complexes were analyzed by HPLC, DSC and FTIR-ATR. The highest amounts of cinnamic acid were determined on complexes prepared by the lowest amounts of protein matrices, regardless of their type. The highest affinity for cinnamic acid adsorption was determined for the pumpkin protein matrix. DSC analysis revealed that adsorption of cinnamic acid caused an increase in the thermal stability of the almond protein matrix, while the other two matrices had the opposite behavior. The complexation of protein matrices and cinnamic acid was proven by recording the IR spectra. The obtained complexes could have potential applications in food products to achieve enrichment with cinnamic acid as well as proteins.
- Published
- 2021
- Full Text
- View/download PDF
24. Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose.
- Author
-
Kopjar M, Ivić I, Buljeta I, Ćorković I, Vukoja J, Šimunović J, and Pichler A
- Abstract
Citrus fiber/blackberry gels (CBg) can be used for the preparation of various bakery products as well as confectioneries. The objective of this study was to evaluate the influence of the type of disaccharides (sucrose or trehalose) and their percentages (10% or 20%) on volatile compounds as well as phenolics, antioxidant activity and color of formulated CBg. Additionally, CBg were stored at room temperature for 3 months to evaluate their stability. Both disaccharides type and their percentage affected the investigated parameters. Sucrose had a higher positive impact on volatiles after formulation and storage of CBg, while trehalose had a higher positive impact on total phenolics. Amounts of phenolics increased with the increase of disaccharides amount, while the behavior of volatiles also depended on volatiles' properties. Results of this study emphasized the importance of the adequate choice of ingredients for the formulation of high-quality fruit products.
- Published
- 2021
- Full Text
- View/download PDF
25. Polyphenols and Antioxidant Activity of Citrus Fiber/Blackberry Juice Complexes.
- Author
-
Buljeta I, Pichler A, Šimunović J, and Kopjar M
- Subjects
- Antioxidants analysis, Citrus chemistry, Dietary Fiber analysis, Fruit and Vegetable Juices analysis, Polyphenols analysis, Rubus chemistry
- Abstract
The objective of this study was to investigate the use of citrus fiber as a carrier of blackberry juice polyphenols. For that purpose, freeze-dried complexes with blackberry juice and different amounts of citrus fiber (1%, 2% and 4%) were prepared. Complexes were evaluated spectrophotometrically for total polyphenols, proanthocyanidins and antioxidant activity. Analyses of individual polyphenols were performed using high-performance liquid chromatography. IR spectra were recorded to confirm encapsulation. All analyses were performed after preparation and after eight months of storage, in order to examine the stability of formed complexes. The obtained results indicated that increasing the amount of fiber led to a decrease in the concentration of polyphenols and the antioxidant activity of complexes. Cyanidin 3-glucoside was the prevalent anthocyanin in complexes (138.32-246.45 mg/100 g), while cyanidin 3-dioxalylglucoside was present at lower concentrations (22.19-31.45 mg/100 g). The other identified and quantified polyphenols were hesperidin (from citrus fiber), ellagic acid and quercetin (1317.59-1571.65 mg/100 g, 31.94-50.11 mg/100 g and 20.11-33.77 mg/100 g, respectively). Degradation of polyphenols occurred during storage. Results obtained in this study confirmed that citrus fiber could be used for the formulation of novel bioactive additives. Such additives could enhance the antioxidant potential of products to which they are added, such as baked goods, dairy, or fruit products.
- Published
- 2021
- Full Text
- View/download PDF
26. Encapsulation of Fruit Flavor Compounds through Interaction with Polysaccharides.
- Author
-
Buljeta I, Pichler A, Ivić I, Šimunović J, and Kopjar M
- Subjects
- Animals, Humans, Hydrogen Bonding, Particle Size, Taste drug effects, Flavoring Agents chemistry, Fruit chemistry, Polysaccharides chemistry
- Abstract
Production and storage, the influence of packaging materials and the presence of other ingredients in fruit products can cause changes in flavor compounds or even their loss. Due to these issues, there is a need to encapsulate flavor compounds, and polysaccharides are often used as efficient carriers. In order to achieve effective encapsulation, satisfactory retention and/or controlled release of flavor compounds, it is necessary to understand the nature of the coated and coating materials. Interactions that occur between these compounds are mostly non-covalent interactions (hydrogen bonds, hydrophobic interactions and van der Waals forces); additionally, the formation of the inclusion complexes of flavor compounds and polysaccharides can also occur. This review provides insight into studies about the encapsulation of flavor compounds, as well as basic characteristics of encapsulation such as the choice of coating material, the effect of various factors on the encapsulation efficiency and an explanation of the nature of binding.
- Published
- 2021
- Full Text
- View/download PDF
27. Hydrogels: Characteristics and Application as Delivery Systems of Phenolic and Aroma Compounds.
- Author
-
Ćorković I, Pichler A, Šimunović J, and Kopjar M
- Abstract
Complex challenges are facing the food industry as it develops novel and innovative products for the consumer marketplace. Food processing and preservation are primarily based on achievement and maintenance of safety in order to protect consumers, as well as extending product shelf life under the relevant conditions of storage, transport and distribution. Maximizing retention of bioactives with recognized positive effects on health typically comes under consideration when the previous two priorities have been achieved. This review introduces the potential applications of hydrogels as delivery systems of high-value bioactives like phenolics and aromas. If they are successfully encapsulated within the gel structures, their release can be controlled, which opens a wide range of applications, not only in food, but also in the pharmaceutical and cosmetic industries. Hydrogels are three-dimensional network structures which can absorb significant amounts of water. They have the ability to thicken the system and therefore can be used to design products with desired properties. In order to preserve the valuable components, it is necessary to know their physicochemical properties, in addition to the properties of the polymer used for hydrogel preparation.
- Published
- 2021
- Full Text
- View/download PDF
28. Replication of 15 loci involved in human plasma protein N-glycosylation in 4802 samples from four cohorts.
- Author
-
Sharapov SZ, Shadrina AS, Tsepilov YA, Elgaeva EE, Tiys ES, Feoktistova SG, Zaytseva OO, Vuckovic F, Cuadrat R, Jäger S, Wittenbecher C, Karssen LC, Timofeeva M, Tillin T, Trbojević-Akmačić I, Štambuk T, Rudman N, Krištić J, Šimunović J, Momčilović A, Vilaj M, Jurić J, Slana A, Gudelj I, Klarić T, Puljak L, Skelin A, Kadić AJ, Van Zundert J, Chaturvedi N, Campbell H, Dunlop M, Farrington SM, Doherty M, Dagostino C, Gieger C, Allegri M, Williams F, Schulze MB, Lauc G, and Aulchenko YS
- Subjects
- Cohort Studies, Computational Biology, Glycosylation, Glycosyltransferases chemistry, Glycosyltransferases genetics, Humans, Membrane Proteins chemistry, Membrane Proteins genetics, Polysaccharides metabolism, Glycosyltransferases metabolism, Membrane Proteins metabolism
- Abstract
Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the 16 loci reported previously, 15 were replicated in our study. For the remaining locus (near the KREMEN1 gene), the replication power was low, and hence, replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The 15 replicated loci present a good target for further functional studies. Among these, eight loci contain genes encoding glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4 and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
29. Disaccharide Type Affected Phenolic and Volatile Compounds of Citrus Fiber-Blackberry Cream Fillings.
- Author
-
Vukoja J, Buljeta I, Ivić I, Šimunović J, Pichler A, and Kopjar M
- Abstract
The food industry is continuously developing ingredients, processing methods and packaging materials to improve the quality of fruit products. The aim of this work was to study the possibility of using citrus fiber in the preparation of blackberry cream fillings in combination with disaccharides (sucrose, maltose and trehalose). Evaluations of the phenolics, proanthocyanidins, antioxidant activity, color and volatiles of blackberry cream fillings were conducted after preparation and after three months of storage. Blackberry cream fillings were prepared from citrus fiber (5%), blackberry juice and disaccharides (50%). Disaccharide type had an effect on all investigated parameters. The highest phenol content was in fillings with trehalose (4.977 g/100 g) and the lowest was in fillings prepared with sucrose (4.249 g/100 g). The same tendency was observed after storage. Fillings with maltose had the highest proanthocyanidins content (473.05 mg/100 g) while fillings with sucrose had the lowest amount (299.03 mg/100 g) of these compounds. Regarding volatile compounds, terpenes and aldehydes and ketones were evaluated in the highest concentration. Terpenes were determined in the highest concentration in fillings with trehalose (358.05 µg/kg), while aldehydes and ketones were highest in fillings with sucrose (250.87 µg/kg). After storage, concentration of volatiles decreased. These results indicate that the selection of adequate disaccharides is very important since it can influence the final quality of the product.
- Published
- 2021
- Full Text
- View/download PDF
30. Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis.
- Author
-
Habazin S, Štambuk J, Šimunović J, Keser T, Razdorov G, and Novokmet M
- Subjects
- Chromatography, Liquid, Glycosylation, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Glycopeptides, Immunoglobulin G metabolism
- Abstract
Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset., (© 2021. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
- Published
- 2021
- Full Text
- View/download PDF
31. Cellulose as a Delivery System of Raspberry Juice Volatiles and Their Stability.
- Author
-
Vukoja J, Pichler A, Ivić I, Šimunović J, and Kopjar M
- Subjects
- Freeze Drying, Cellulose chemistry, Flavoring Agents analysis, Fruit chemistry, Odorants analysis, Rubus chemistry, Volatile Organic Compounds analysis, Volatile Organic Compounds chemistry
- Abstract
Formulation of delivery systems for active ingredients is of increasing importance for the food industry. For that purpose, we selected cellulose as a carrier polymer of raspberry volatiles. Freeze-dried cellulose/raspberry complexes were prepared by complexation of raspberry juice (constant amount) and cellulose (2.5%, 5%, 7.5% and 10%). In our study, cellulose was shown as a good carrier of raspberry juice volatiles. Thirty-nine volatiles were detected in raspberry juice while 11 of them were lost during preparation of the complexes. Berry flavor note was the dominant one in raspberry juice (40% of overall flavor), followed by citrus and woody notes (each around 18% of overall flavor) and floral, fruity, and green (each around 8% of overall flavor). Cellulose/raspberry complexes had different flavor profiles, but a berry flavor note was still the dominant one in all complexes. These results suggest an efficient plant-based approach to produce value-added cellulose/volatile dry complexes with possible utility as food flavoring ingredients.
- Published
- 2020
- Full Text
- View/download PDF
32. Plasma N-glycome composition associates with chronic low back pain.
- Author
-
Trbojević-Akmačić I, Vučković F, Vilaj M, Skelin A, Karssen LC, Krištić J, Jurić J, Momčilović A, Šimunović J, Mangino M, De Gregori M, Marchesini M, Dagostino C, Štambuk J, Novokmet M, Rauck R, Aulchenko YS, Primorac D, Kapural L, Buyse K, Mesotten D, Williams FMK, van Zundert J, Allegri M, and Lauc G
- Subjects
- Adult, Aged, Case-Control Studies, Female, Follow-Up Studies, Glycoproteins analysis, Glycosylation, Humans, Low Back Pain metabolism, Male, Middle Aged, Polysaccharides analysis, Prognosis, Retrospective Studies, Glycomics methods, Glycoproteins metabolism, Low Back Pain diagnosis, Polysaccharides metabolism
- Abstract
Background: Low back pain (LBP) is the symptom of a group of syndromes with heterogeneous underlying mechanisms and molecular pathologies, making treatment selection and patient prognosis very challenging. Moreover, symptoms and prognosis of LBP are influenced by age, gender, occupation, habits, and psychological factors. LBP may be characterized by an underlying inflammatory process. Previous studies indicated a connection between inflammatory response and total plasma N-glycosylation. We wanted to identify potential changes in total plasma N-glycosylation pattern connected with chronic low back pain (CLBP), which could give an insight into the pathogenic mechanisms of the disease., Methods: Plasma samples of 1128 CLBP patients and 760 healthy controls were collected in clinical centers in Italy, Belgium and Croatia and used for N-glycosylation profiling by hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) after N-glycans release, fluorescent labeling and clean-up. Observed N-glycosylation profiles have been compared with a cohort of 126 patients with acute inflammation that underwent abdominal surgery., Results: We have found a statistically significant increase in the relative amount of high-branched (tri-antennary and tetra-antennary) N-glycan structures on CLBP patients' plasma glycoproteins compared to healthy controls. Furthermore, relative amounts of disialylated and trisialylated glycan structures were increased, while high-mannose and glycans containing bisecting N-acetylglucosamine decreased in CLBP., Conclusions: Observed changes in CLBP on the plasma N-glycome level are consistent with N-glycosylation changes usually seen in chronic inflammation., General Significance: To our knowledge, this is a first large clinical study on CLBP patients and plasma N-glycome providing a new glycomics perspective on potential disease pathology., (Copyright © 2018 Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.