1. A multi-biomarker approach to assess toxicity of diclofenac and 4-OH diclofenac in Mytilus trossulus mussels - First evidence of diclofenac metabolite impact on molluscs.
- Author
-
Świacka K, Maculewicz J, Świeżak J, Caban M, and Smolarz K
- Subjects
- Animals, Diclofenac toxicity, Diclofenac metabolism, Aquatic Organisms metabolism, Biomarkers metabolism, Pharmaceutical Preparations metabolism, Mytilus metabolism, Water Pollutants, Chemical analysis
- Abstract
Although the presence of pharmaceuticals in the environment is an issue widely addressed in research over the past two decades, still little is known about their transformation products. However, there are indications that some of these chemicals may be equally or even more harmful than parent compounds. Diclofenac (DCF) is among the most commonly detected pharmaceuticals in the aquatic environment, but the potential effects of its metabolites on organisms are poorly understood. Therefore, the present study aimed to evaluate and compare the toxicity of DCF and its metabolite, 4-hydroxy diclofenac (4-OH DCF), in mussels using a multi-biomarker approach. Mytilus trossulus mussels were exposed to DCF and 4-OH DCF at 68.22 and 20.85 μg/L (measured concentrations at day 0), respectively, for 7 days. In our work, we showed that both tested compounds have no effect on most of the enzymatic biomarkers tested. However, it has been shown that their action can affect the protein content in gills and also be reflected through histological markers. ENVIRONMENTAL IMPLICATION: Studies in recent years clearly prove that pharmaceuticals can negatively affect aquatic organisms. In addition to parent compounds, metabolites of pharmaceuticals can also be a significant environmental problem. In the present work, the effects of diclofenac and its main metabolite, 4-hydroxy diclofenac, on marine mussels were evaluated. Both compounds showed negative effects on mussels, which was primarily observed through histological changes. The present study therefore confirms that not only diclofenac, but also its main metabolite can have negative effects on aquatic organisms., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF