Godet, Adrien, Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Université Bourgogne Franche-Comté, Kien Phan Huy, Jean-Charles Beugnot, and Thibaut Sylvestre
This thesis reports the design and fabrication of subwavelength-diameter silica optical fibers, also known as optical micro and nanowires. These hair-like slivers of glass, manufactured by tapering optical fibers down to a size hundred times smaller than a strand of human hair, have a number of optical and mechanical properties that make them very attractive for both fundamental physics and technological applications. In addition to providing strong light confinement and enhanced nonlinear optical effects, they exhibit a large evanescent field, enabling applications not currently possible with comparatively bulky optical fibers.We here explore their elastic properties through Brillouin spectroscopy. We specifically provide a complete description, both theoretically and experimentally, of the backward Brillouin spectra including the observation of both bulk hybrid and surface acoustic waves with many anti-crossings. A very good agreement is found between numerical simulations of the elastodynamics equation and the experimental Brillouin spectra for a wide range of wire diameters. From this study, we demonstrate a simple and non-destructive in-situ technique for measuring the diameter of these ultra-thin fibers and their uniformity with a high sensitivity of only a few nanometers. A distributed measurement of both the surface and hybrid acoustic waves along an optical microwire was then performed using Brillouin optical correlation technique. We further investigate the tensile strain dependence of Brillouin scattering in optical microwires and report, for the first time to our knowledge, evidence of a strong elasticity and non-linearity of the elastic constants of silica. This thesis therefore demonstrates that optical microwires can find various potential applications for strain optical sensing.; Cette thèse de doctorat porte sur la conception et la fabrication de microfils optiques de silice par la technique de fusion et d'étirage de fibres optiques standards, ainsi qu'une étude détaillée de leurs propriétés élastiques par spectroscopie Brillouin. Nous apportons une description complète, théorique et expérimentale, des spectres Brillouin rétro-diffusés par les microfils, révélant ainsi l'existence de plusieurs familles d'ondes élastiques, telles que les ondes hybrides et surfacique, ainsi que de nombreux anti-croisements. En exploitant l'ensemble de ces propriétés élastiques, nous démontrons ensuite une technique de mesure optique, simple et non-destructive, du diamètre des microfils et de leur uniformité, avec une très grande précision et une sensibilité de quelques nanomètres, comparable aux techniques conventionnelles comme la microscopie par balayage électronique. Nous réalisons en supplément une cartographie des ondes élastiques le long des microfils optiques par la technique de corrélation Brillouin de phase. Une autre étude majeure de cette thèse a porté sur la dépendance du spectre Brillouin en fonction d'une déformation axiale des microfils optiques qui présentent une très grande élasticité et des coefficients de contraintes élevés. Pour la première fois à notre connaissance, nous avons observé l’effet des non-linéaritiés des constantes élastiques de la silice dans un microfil optique fortement déformé sur les coefficients de contraintes. L'ensemble de ces travaux représente une étude fondamentale du processus de diffusion Brillouin dans les microfils optiques et permet également d'ouvrir la voie aux développements de dispositifs photoniques compacts dans le domaine des capteurs et des télécommunications.