8 results on '"Åsander Frostner E"'
Search Results
2. Mitochondrial respiratory states and rates: Building blocks of mitochondrial physiology (Part 1)
- Author
-
Gnaiger, E., Ahn, B., Alves, M. G., Amati, F., Aral, C., Arandarčikaitė, O., Åsander Frostner, E., Bailey, David M., Bastos Sant'Anna Silva, A. C., Battino, M., Beard, D. A., Newsom, S., Robinson, M. M., Patel, H. H., Buettner, G. R., Pecina, P., Shevchuk, I., Pereira da Silva Grilo da Silva, F., Ben-Shachar, D., Pesta, D., Goodpaster, B. H., Zorzano, Antonio, Petit, P. X., Pichaud, N., Pirkmajer, S., Porter, R. K., Wagner, B. A., Pranger, F., Rohlena, J., Prochownik, E. V., Siewiera, K., Røsland, G. V., Ehinger, J., Rossiter, H. B., Towheed, A., Rybacka-Mossakowska, J., Dias, T., Salvadego, D., Jansen-Dürr, P., Scatena, R., Schartner, M., Scheibye-Knudsen, Morten, Breton, S., Cardoso, L.H.D., Schilling, J. M., Singer, D., Schlattner, U., Brown, R. A., Sobotka, O., Spinazzi, M., Ward, M. L., Brown, G. C., Gonzalo, H., Stankova, P., Labieniec-Watala, M., Stier, A., Stocker, R., Sumbalova, Zuzana, Doerrier, C., Suravajhala, P., Tretter, L., Tanaka, M., Duchen, Michael R., Trivigno, C., Tronstad, K. J., Carvalho, Eugenia, Drahota, Z., Jackson, C. B., Trougakos, I. P., Tyrrell, D. J., Urban, T., Velika, B., Gorr, T. A., Vercesi, A. E., Watala, C., Victor, V. M., Grefte, S., Wei, Y. H., Wieckowski, M. R., O'Gorman, D., Kucera, O., Wohlwend, M., Wolff, J., Wuest, R.C.I., Zaugg, K., Jespersen, N. R., Zaugg, M., Casado, Marta, Calabria, E., Červinková, Zuzana, Chang, S. C., Radenkovic, F., Moisoi, N., Chicco, A. J., Chinopoulos, C., Coen, P. M., Collins, J. L., Lai, N., Crisóstomo, L., Elmer, E., Davis, M. S., Han, J., Endlicher, R., Pak, Y. K., Fell, D. A., Jha, R. K., Ferko, M., Nozickova, K., Ferreira, J.C.B., Scott, G. R., Filipovska, A., Fisar, Z., Fisher, J., García-Rovés, Pablo M., Molina, A.J.A., Garcia-Souza, L. F., Harrison, D. K., Genova, M. L., Kaambre, T., Hellgren, K. T., Hernansanz-Agustín, Pablo, Laner, V., Holland, O., Puurand, M., Hoppel, C. L., Tepp, K., Houstek, J., Hunger, M., Iglesias-Gonzalez, J., Oliveira, P. F., Irving, B. A., Kane, D. A., Iyer, S., Orynbayeva, Z., Kappler, L., Karabatsiakis, A., Montaigne, D., Oliveira, P. J., Schoenfeld, P., Keijer, J., Keppner, G., Komlodi, T., Kopitar-Jerala, N., Reboredo, P., Krako Jakovljevic, N., Larsen, T. S., Kuang, J., Renner-Sattler, K., Lee, H. K., Lemieux, H., Bishop, D., Tandler, B., Lerfall, J., Lucchinetti, E., MacMillan-Crow, L. A., Makrecka-Kuka, M., Shabalina, I. G., Meszaros, A. T., Moore, A. L., Michalak, S., Moreira, B. P., Mracek, T., Distefano, G., Villena, J. A., Muntané, Jordi, Muntean, D. M., Murray, A. J., Nedergaard, J., Tomar, D., Nemec, M., Palmeira, C. M., and European Commission
- Subjects
Mitochondrial preparations ,Mitochondrial respiratory control ,Proton leak ,Flux ,Flow ,Coupling control ,Efficiency ,State 4 ,Protonmotive force ,State 2 ,OXPHOS ,Residual oxygen consumption ,State 3 ,Electron transfer ,Normalization ,ROX ,Oxidative phosphorylation ,LEAK ,ET - Abstract
Supporting co-authors: Bakker BM, Bernardi P, Boetker HE, Borsheim E, Borutaitė V, Bouitbir J, Calbet JA, Calzia E, Chaurasia B, Clementi E, Coker RH, Collin A, Das AM, De Palma C, Dubouchaud H, Durham WJ, Dyrstad SE, Engin AB, Fornaro M, Gan Z, Garlid KD, Garten A, Gourlay CW, Granata C, Haas CB, Haavik J, Haendeler J, Hand SC, Hepple RT, Hickey AJ, Hoel F, Jang DH, Kainulainen H, Khamoui AV, Klingenspor M, Koopman WJH, Kowaltowski AJ, Krajcova A, Lane N, Lenaz G, Malik A, Markova M, Mazat JP, Menze MA, Methner A, Neuzil J, Oliveira MT, Pallotta ML, Parajuli N, Pettersen IKN, Porter C, Pulinilkunnil T, Ropelle ER, Salin K, Sandi C, Sazanov LA, Silber AM, Skolik R, Smenes BT, Soares FAA, Sokolova I, Sonkar VK, Swerdlow RH, Szabo I, Trifunovic A, Thyfault JP, Valentine JM, Vieyra A, Votion DM, Williams C, Zischka H, As the knowledge base and importance of mitochondrial physiology to human health expand, the necessity for harmonizing nomenclature concerning mitochondrial respiratory states and rates has become increasingly apparent. Clarity of concept and consistency of nomenclature are key trademarks of a research field. These trademarks facilitate effective transdisciplinary communication, education, and ultimately further discovery. Peter Mitchell’s chemiosmotic theory establishes the link between vectorial and scalar energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theory and nomenclature for mitochondrial physiology and bioenergetics. Herein, we follow IUPAC guidelines on general terms of physical chemistry, extended by considerations on open systems and irreversible thermodynamics. We align the nomenclature and symbols of classical bioenergetics with a concept-driven constructive terminology to express the meaning of each quantity clearly and consistently. In this position statement, in the frame of COST Action MitoEAGLE, we endeavour to provide a balanced view on mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately support the development of databases of mitochondrial respiratory function in species, tissues, and cells., We thank M. Beno for management assistance. Supported by COST Action CA15203 MitoEAGLE and K-Regio project MitoFit (E.G.).
- Published
- 2018
- Full Text
- View/download PDF
3. Mitochondrial respiratory states and rates: Building blocks of mitochondrial physiology (Part 1)
- Author
-
European Commission, Gnaiger, E., Ahn, B., Alves, M. G., Amati, F., Aral, C., Arandarčikaitė, O., Åsander Frostner, E., Bailey, David M., Bastos Sant'Anna Silva, A. C., Battino, M., Beard, D. A., Newsom, S., Robinson, M. M., Patel, H. H., Buettner, G. R., Pecina, P., Shevchuk, I., Pereira da Silva Grilo da Silva, F., Ben-Shachar, D., Pesta, D., Goodpaster, B. H., Zorzano, Antonio, Petit, P. X., Pichaud, N., Pirkmajer, S., Porter, R. K., Wagner, B. A., Pranger, F., Rohlena, J., Prochownik, E. V., Siewiera, K., Røsland, G. V., Ehinger, J., Rossiter, H. B., Towheed, A., Rybacka-Mossakowska, J., Dias, T., Salvadego, D., Jansen-Dürr, P., Scatena, R., Schartner, M., Scheibye-Knudsen, Morten, Breton, S., Cardoso, L.H.D., Schilling, J. M., Singer, D., Schlattner, U., Brown, R. A., Sobotka, O., Spinazzi, M., Ward, M. L., Brown, G. C., Gonzalo, H., Stankova, P., Labieniec-Watala, M., Stier, A., Stocker, R., Sumbalova, Zuzana, Doerrier, C., Suravajhala, P., Tretter, L., Tanaka, M., Duchen, Michael R., Trivigno, C., Tronstad, K. J., Carvalho, Eugenia, Drahota, Z., Jackson, C. B., Trougakos, I. P., Tyrrell, D. J., Urban, T., Velika, B., Gorr, T. A., Vercesi, A. E., Watala, C., Victor, V. M., Grefte, S., Wei, Y. H., Wieckowski, M. R., O'Gorman, D., Kucera, O., Wohlwend, M., Wolff, J., Wuest, R.C.I., Zaugg, K., Jespersen, N. R., Zaugg, M., Casado, Marta, Calabria, E., Červinková, Zuzana, Chang, S. C., Radenkovic, F., Moisoi, N., Chicco, A. J., Chinopoulos, C., Coen, P. M., Collins, J. L., Lai, N., Crisóstomo, L., Elmer, E., Davis, M. S., Han, J., Endlicher, R., Pak, Y. K., Fell, D. A., Jha, R. K., Ferko, M., Nozickova, K., Ferreira, J.C.B., Scott, G. R., Filipovska, A., Fisar, Z., Fisher, J., García-Rovés, Pablo M., Molina, A.J.A., Garcia-Souza, L. F., Harrison, D. K., Genova, M. L., Kaambre, T., Hellgren, K. T., Hernansanz-Agustín, Pablo, Laner, V., Holland, O., Puurand, M., Hoppel, C. L., Tepp, K., Houstek, J., Hunger, M., Iglesias-Gonzalez, J., Oliveira, P. F., Irving, B. A., Kane, D. A., Iyer, S., Orynbayeva, Z., Kappler, L., Karabatsiakis, A., Montaigne, D., Oliveira, P. J., Schoenfeld, P., Keijer, J., Keppner, G., Komlodi, T., Kopitar-Jerala, N., Reboredo, P., Krako Jakovljevic, N., Larsen, T. S., Kuang, J., Renner-Sattler, K., Lee, H. K., Lemieux, H., Bishop, D., Tandler, B., Lerfall, J., Lucchinetti, E., MacMillan-Crow, L. A., Makrecka-Kuka, M., Shabalina, I. G., Meszaros, A. T., Moore, A. L., Michalak, S., Moreira, B. P., Mracek, T., Distefano, G., Villena, J. A., Muntané, Jordi, Muntean, D. M., Murray, A. J., Nedergaard, J., Tomar, D., Nemec, M., Palmeira, C. M., European Commission, Gnaiger, E., Ahn, B., Alves, M. G., Amati, F., Aral, C., Arandarčikaitė, O., Åsander Frostner, E., Bailey, David M., Bastos Sant'Anna Silva, A. C., Battino, M., Beard, D. A., Newsom, S., Robinson, M. M., Patel, H. H., Buettner, G. R., Pecina, P., Shevchuk, I., Pereira da Silva Grilo da Silva, F., Ben-Shachar, D., Pesta, D., Goodpaster, B. H., Zorzano, Antonio, Petit, P. X., Pichaud, N., Pirkmajer, S., Porter, R. K., Wagner, B. A., Pranger, F., Rohlena, J., Prochownik, E. V., Siewiera, K., Røsland, G. V., Ehinger, J., Rossiter, H. B., Towheed, A., Rybacka-Mossakowska, J., Dias, T., Salvadego, D., Jansen-Dürr, P., Scatena, R., Schartner, M., Scheibye-Knudsen, Morten, Breton, S., Cardoso, L.H.D., Schilling, J. M., Singer, D., Schlattner, U., Brown, R. A., Sobotka, O., Spinazzi, M., Ward, M. L., Brown, G. C., Gonzalo, H., Stankova, P., Labieniec-Watala, M., Stier, A., Stocker, R., Sumbalova, Zuzana, Doerrier, C., Suravajhala, P., Tretter, L., Tanaka, M., Duchen, Michael R., Trivigno, C., Tronstad, K. J., Carvalho, Eugenia, Drahota, Z., Jackson, C. B., Trougakos, I. P., Tyrrell, D. J., Urban, T., Velika, B., Gorr, T. A., Vercesi, A. E., Watala, C., Victor, V. M., Grefte, S., Wei, Y. H., Wieckowski, M. R., O'Gorman, D., Kucera, O., Wohlwend, M., Wolff, J., Wuest, R.C.I., Zaugg, K., Jespersen, N. R., Zaugg, M., Casado, Marta, Calabria, E., Červinková, Zuzana, Chang, S. C., Radenkovic, F., Moisoi, N., Chicco, A. J., Chinopoulos, C., Coen, P. M., Collins, J. L., Lai, N., Crisóstomo, L., Elmer, E., Davis, M. S., Han, J., Endlicher, R., Pak, Y. K., Fell, D. A., Jha, R. K., Ferko, M., Nozickova, K., Ferreira, J.C.B., Scott, G. R., Filipovska, A., Fisar, Z., Fisher, J., García-Rovés, Pablo M., Molina, A.J.A., Garcia-Souza, L. F., Harrison, D. K., Genova, M. L., Kaambre, T., Hellgren, K. T., Hernansanz-Agustín, Pablo, Laner, V., Holland, O., Puurand, M., Hoppel, C. L., Tepp, K., Houstek, J., Hunger, M., Iglesias-Gonzalez, J., Oliveira, P. F., Irving, B. A., Kane, D. A., Iyer, S., Orynbayeva, Z., Kappler, L., Karabatsiakis, A., Montaigne, D., Oliveira, P. J., Schoenfeld, P., Keijer, J., Keppner, G., Komlodi, T., Kopitar-Jerala, N., Reboredo, P., Krako Jakovljevic, N., Larsen, T. S., Kuang, J., Renner-Sattler, K., Lee, H. K., Lemieux, H., Bishop, D., Tandler, B., Lerfall, J., Lucchinetti, E., MacMillan-Crow, L. A., Makrecka-Kuka, M., Shabalina, I. G., Meszaros, A. T., Moore, A. L., Michalak, S., Moreira, B. P., Mracek, T., Distefano, G., Villena, J. A., Muntané, Jordi, Muntean, D. M., Murray, A. J., Nedergaard, J., Tomar, D., Nemec, M., and Palmeira, C. M.
- Abstract
As the knowledge base and importance of mitochondrial physiology to human health expand, the necessity for harmonizing nomenclature concerning mitochondrial respiratory states and rates has become increasingly apparent. Clarity of concept and consistency of nomenclature are key trademarks of a research field. These trademarks facilitate effective transdisciplinary communication, education, and ultimately further discovery. Peter Mitchell’s chemiosmotic theory establishes the link between vectorial and scalar energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theory and nomenclature for mitochondrial physiology and bioenergetics. Herein, we follow IUPAC guidelines on general terms of physical chemistry, extended by considerations on open systems and irreversible thermodynamics. We align the nomenclature and symbols of classical bioenergetics with a concept-driven constructive terminology to express the meaning of each quantity clearly and consistently. In this position statement, in the frame of COST Action MitoEAGLE, we endeavour to provide a balanced view on mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately support the development of databases of mitochondrial respiratory function in species, tissues, and cells.
- Published
- 2018
4. Correlation of mitochondrial respiration in platelets, peripheral blood mononuclear cells and muscle fibers.
- Author
-
Westerlund E, Marelsson SE, Karlsson M, Sjövall F, Chamkha I, Åsander Frostner E, Lundgren J, Fellman V, Eklund EA, Steding-Ehrenborg K, Darin N, Paul G, Hansson MJ, Ehinger JK, and Elmér E
- Abstract
There is a growing interest for the possibility of using peripheral blood cells (including platelets) as markers for mitochondrial function in less accessible tissues. Only a few studies have examined the correlation between respiration in blood and muscle tissue, with small sample sizes and conflicting results. This study investigated the correlation of mitochondrial respiration within and across tissues. Additional analyses were performed to elucidate which blood cell type would be most useful for assessing systemic mitochondrial function. There was a significant but weak within tissue correlation between platelets and peripheral blood mononuclear cells (PBMCs). Neither PBMCs nor platelet respiration correlated significantly with muscle respiration. Muscle fibers from a group of athletes had higher mass-specific respiration, due to higher mitochondrial content than non-athlete controls, but this finding was not replicated in either of the blood cell types. In a group of patients with primary mitochondrial diseases, there were significant differences in blood cell respiration compared to healthy controls, particularly in platelets. Platelet respiration generally correlated better with the citrate synthase activity of each sample, in comparison to PBMCs. In conclusion, this study does not support the theory that blood cells can be used as accurate biomarkers to detect minor alterations in muscle respiration. However, in some instances, pronounced mitochondrial abnormalities might be reflected across tissues and detectable in blood cells, with more promising findings for platelets than PBMCs., Competing Interests: Imen Chamkha, Johannes K. Ehinger, Eskil Elmér, Magnus J. Hansson, Michael Karlsson, and Eleonor Åsander Frostner have equity interests in, and/or have received salary support and/or travel reimbursements and/or grants from Abliva AB (formerly NeuroVive Pharmaceutical AB), a public company developing pharmaceuticals in the field of mitochondrial medicine. The other authors declare no financial or commercial conflict of interest., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
5. Cell-Permeable Succinate Rescues Mitochondrial Respiration in Cellular Models of Amiodarone Toxicity.
- Author
-
Bețiu AM, Chamkha I, Gustafsson E, Meijer E, Avram VF, Åsander Frostner E, Ehinger JK, Petrescu L, Muntean DM, and Elmér E
- Subjects
- Adenosine Triphosphate metabolism, Blood Platelets drug effects, Blood Platelets metabolism, Cell Respiration drug effects, Hep G2 Cells, Humans, Mitochondria metabolism, Prodrugs pharmacology, Amiodarone toxicity, Anti-Arrhythmia Agents toxicity, Mitochondria drug effects, Protective Agents pharmacology, Succinic Acid pharmacology
- Abstract
Amiodarone is a potent antiarrhythmic drug and displays substantial liver toxicity in humans. It has previously been demonstrated that amiodarone and its metabolite (desethylamiodarone, DEA) can inhibit mitochondrial function, particularly complexes I (CI) and II (CII) of the electron transport system in various animal tissues and cell types. The present study, performed in human peripheral blood cells, and one liver-derived human cell line, is primarily aimed at assessing the concentration-dependent effects of these drugs on mitochondrial function (respiration and cellular ATP levels). Furthermore, we explore the efficacy of a novel cell-permeable succinate prodrug in alleviating the drug-induced acute mitochondrial dysfunction. Amiodarone and DEA elicit a concentration-dependent impairment of mitochondrial respiration in both intact and permeabilized platelets via the inhibition of both CI- and CII-supported respiration. The inhibitory effect seen in human platelets is also confirmed in mononuclear cells (PBMCs) and HepG2 cells. Additionally, amiodarone elicits a severe concentration-dependent ATP depletion in PBMCs, which cannot be explained solely by mitochondrial inhibition. The succinate prodrug NV118 alleviates the respiratory deficit in platelets and HepG2 cells acutely exposed to amiodarone. In conclusion, amiodarone severely inhibits metabolism in primary human mitochondria, which can be counteracted by increasing mitochondrial function using intracellular delivery of succinate.
- Published
- 2021
- Full Text
- View/download PDF
6. Cell-Permeable Succinate Rescues Mitochondrial Respiration in Cellular Models of Statin Toxicity.
- Author
-
Avram VF, Chamkha I, Åsander-Frostner E, Ehinger JK, Timar RZ, Hansson MJ, Muntean DM, and Elmér E
- Subjects
- Adult, Aged, Blood Platelets drug effects, Female, Humans, Male, Mitochondria drug effects, Blood Platelets physiology, Cell Respiration, Hydroxymethylglutaryl-CoA Reductase Inhibitors pharmacology, Mitochondria physiology, Oxygen Consumption, Succinic Acid pharmacology
- Abstract
Statins are the cornerstone of lipid-lowering therapy. Although generally well tolerated, statin-associated muscle symptoms (SAMS) represent the main reason for treatment discontinuation. Mitochondrial dysfunction of complex I has been implicated in the pathophysiology of SAMS. The present study proposed to assess the concentration-dependent ex vivo effects of three statins on mitochondrial respiration in viable human platelets and to investigate whether a cell-permeable prodrug of succinate (complex II substrate) can compensate for statin-induced mitochondrial dysfunction. Mitochondrial respiration was assessed by high-resolution respirometry in human platelets, acutely exposed to statins in the presence/absence of the prodrug NV118. Statins concentration-dependently inhibited mitochondrial respiration in both intact and permeabilized cells. Further, statins caused an increase in non-ATP generating oxygen consumption (uncoupling), severely limiting the OXPHOS coupling efficiency, a measure of the ATP generating capacity. Cerivastatin (commercially withdrawn due to muscle toxicity) displayed a similar inhibitory capacity compared with the widely prescribed and tolerable atorvastatin, but did not elicit direct complex I inhibition. NV118 increased succinate-supported mitochondrial oxygen consumption in atorvastatin/cerivastatin-exposed platelets leading to normalization of coupled (ATP generating) respiration. The results acquired in isolated human platelets were validated in a limited set of experiments using atorvastatin in HepG2 cells, reinforcing the generalizability of the findings.
- Published
- 2021
- Full Text
- View/download PDF
7. Urban PM2.5 Induces Cellular Toxicity, Hormone Dysregulation, Oxidative Damage, Inflammation, and Mitochondrial Interference in the HRT8 Trophoblast Cell Line.
- Author
-
Nääv Å, Erlandsson L, Isaxon C, Åsander Frostner E, Ehinger J, Sporre MK, Krais AM, Strandberg B, Lundh T, Elmér E, Malmqvist E, and Hansson SR
- Subjects
- Air Pollutants adverse effects, Air Pollutants analysis, Air Pollutants chemistry, Cells, Cultured, Female, Humans, Inflammation chemically induced, Mitochondria drug effects, Particulate Matter analysis, Particulate Matter chemistry, Pregnancy, Trophoblasts drug effects, Apoptosis, Hormones analysis, Inflammation pathology, Mitochondria pathology, Oxidative Stress, Particulate Matter adverse effects, Reactive Oxygen Species metabolism, Trophoblasts pathology
- Abstract
Objective: Epidemiological studies have found air pollution to be a driver of adverse pregnancy outcomes, including gestational diabetes, low term birth weight and preeclampsia. It is unknown what biological mechanisms are involved in this process. A first trimester trophoblast cell line (HTR-8/SVneo) was exposed to various concentrations of PM2.5 (PM2.5) in order to elucidate the effect of urban particulate matter (PM) of size <2.5 μm on placental function. Methods: PM2.5 were collected at a site representative of urban traffic and dispersed in cell media by indirect and direct sonication. The HTR-8 cells were grown under standard conditions. Cellular uptake was studied after 24 and 48 h of exposure by transmission electron microscopy (TEM). The secretion of human chorionic gonadotropin (hCG), progesterone, and Interleukin-6 (IL-6) was measured by ELISA. Changes in membrane integrity and H
2 O2 production were analyzed using the CellToxTM Green Cytotoxicity and ROSGloTM assays. Protease activity was evaluated by MitoToxTM assay. Mitochondrial function was assessed through high resolution respirometry in an Oroboros O2k-FluoRespirometer, and mitochondrial content was quantified by citrate synthase activity. Results: TEM analysis depicted PM2.5 cellular uptake and localization of the PM2.5 to the mitochondria after 24 h. The cells showed aggregated cytoskeleton and generalized necrotic appearance, such as chromatin condensation, organelle swelling and signs of lost membrane integrity. The mitochondria displayed vacuolization and disruption of cristae morphology. At 48 h exposure, a significant drop in hCG secretion and a significant increase in progesterone secretion and IL-6 production occurred. At 48 h exposure, a five-fold increase in protease activity and a significant alteration of H2 O2 production was observed. The HTR-8 cells exhibited evidence of increased cytotoxicity with increasing exposure time and dose of PM2.5. No significant difference in mitochondrial respiration or mitochondrial mass could be demonstrated. Conclusion: Following exposure to air pollution, intracellular accumulation of PM may contribute to the placental dysfunction associated with pregnancy outcomes, such as preeclampsia and intrauterine growth restriction, through their direct and indirect effects on trophoblast protein secretion, hormone regulation, inflammatory response, and mitochondrial interference., (Copyright © 2020 Nääv, Erlandsson, Isaxon, Åsander Frostner, Ehinger, Sporre, Krais, Strandberg, Lundh, Elmér, Malmqvist and Hansson.)- Published
- 2020
- Full Text
- View/download PDF
8. Oxygen consumption in platelets as an adjunct diagnostic method for pediatric mitochondrial disease.
- Author
-
Westerlund E, Marelsson SE, Ehinger JK, Sjövall F, Morota S, Åsander Frostner E, Oldfors A, Darin N, Lundgren J, Hansson MJ, Fellman V, and Elmér E
- Subjects
- Biopsy, Child, Child, Preschool, Female, Humans, Infant, Infant, Newborn, Lactic Acid blood, Male, Oxygen chemistry, Prevalence, Sensitivity and Specificity, Blood Platelets metabolism, Mitochondria metabolism, Mitochondrial Diseases blood, Mitochondrial Diseases diagnosis, Oxygen Consumption
- Abstract
BackgroundDiagnosing mitochondrial disease (MD) is a challenge. In addition to genetic analyses, clinical practice is to perform invasive procedures such as muscle biopsy for biochemical and histochemical analyses. Blood cell respirometry is rapid and noninvasive. Our aim was to explore its possible role in diagnosing MD.MethodsBlood samples were collected from 113 pediatric patients, for whom MD was a differential diagnosis. A respiratory analysis model based on ratios (independent of mitochondrial specific content) was derived from a group of healthy controls and tested on the patients. The diagnostic accuracy of platelet respirometry was evaluated against routine diagnostic investigation.ResultsMD prevalence in the cohort was 16%. A ratio based on the respiratory response to adenosine diphosphate in the presence of complex I substrates had 96% specificity for disease and a positive likelihood ratio of 5.3. None of the individual ratios had sensitivity above 50%, but a combined model had 72% sensitivity.ConclusionNormal findings of platelet respirometry are not able to rule out MD, but pathological results make the diagnosis more likely and could strengthen the clinical decision to perform further invasive analyses. Our results encourage further study into the role of blood respirometry as an adjunct diagnostic tool for MD.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.