301. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing.
- Author
-
Fan Z, Ho JC, Jacobson ZA, Yerushalmi R, Alley RL, Razavi H, and Javey A
- Abstract
Controlled and uniform assembly of "bottom-up" nanowire (NW) materials with high scalability presents one of the significant bottleneck challenges facing the integration of nanowires for electronic applications. Here, we demonstrate wafer-scale assembly of highly ordered, dense, and regular arrays of NWs with high uniformity and reproducibility through a simple contact printing process. The assembled NW pitch is shown to be readily modulated through the surface chemical treatment of the receiver substrate, with the highest density approaching approximately 8 NW/mum, approximately 95% directional alignment, and wafer-scale uniformity. Such fine control in the assembly is attained by applying a lubricant during the contact printing process which significantly minimizes the NW-NW mechanical interactions, therefore enabling well-controlled transfer of nanowires through surface chemical binding interactions. Furthermore, we demonstrate that our printing approach enables large-scale integration of NW arrays for various device structures on both rigid silicon and flexible plastic substrates, with a controlled semiconductor channel width ranging from a single NW ( approximately 10 nm) up to approximately 250 microm, consisting of a parallel array of over 1250 NWs and delivering over 1 mA of ON current.
- Published
- 2008
- Full Text
- View/download PDF