195 results on '"Wiegelmann, T"'
Search Results
152. COEXISTING FLUX ROPE AND DIPPED ARCADE SECTIONS ALONG ONE SOLAR FILAMENT
- Author
-
Guo, Y., primary, Schmieder, B., additional, Démoulin, P., additional, Wiegelmann, T., additional, Aulanier, G., additional, Török, T., additional, and Bommier, V., additional
- Published
- 2010
- Full Text
- View/download PDF
153. Nonlinear force-free modelling: influence of inaccuracies in the measured magnetic vector
- Author
-
Wiegelmann, T., primary, Yelles Chaouche, L., additional, Solanki, S. K., additional, and Lagg, A., additional
- Published
- 2010
- Full Text
- View/download PDF
154. Nonlinear force-free coronal magnetic field modelling and preprocessing of vector magnetograms in spherical geometry
- Author
-
Tadesse, T., primary, Wiegelmann, T., additional, and Inhester, B., additional
- Published
- 2009
- Full Text
- View/download PDF
155. Solar stereoscopy – where are we and what developments do we require to progress?
- Author
-
Wiegelmann, T., primary, Inhester, B., additional, and Feng, L., additional
- Published
- 2009
- Full Text
- View/download PDF
156. Coronal hole boundaries evolution at small scales
- Author
-
Madjarska, M. S., primary and Wiegelmann, T., additional
- Published
- 2009
- Full Text
- View/download PDF
157. STEREOSCOPIC POLAR PLUME RECONSTRUCTIONS FROMSTEREO/SECCHI IMAGES
- Author
-
Feng, L., primary, Inhester, B., additional, Solanki, S. K., additional, Wilhelm, K., additional, Wiegelmann, T., additional, Podlipnik, B., additional, Howard, R. A., additional, Plunkett, S. P., additional, Wuelser, J. P., additional, and Gan, W. Q., additional
- Published
- 2009
- Full Text
- View/download PDF
158. FORMATION HEIGHTS OF EXTREME ULTRAVIOLET LINES IN AN ACTIVE REGION DERIVED BY CORRELATION OF DOPPLER VELOCITY AND MAGNETIC FIELD
- Author
-
Guo, Y., primary, Ding, M. D., additional, Jin, M., additional, and Wiegelmann, T., additional
- Published
- 2009
- Full Text
- View/download PDF
159. Multiple‐spacecraft study of an extended magnetic structure in the solar wind
- Author
-
Ruan, P., primary, Korth, A., additional, Marsch, E., additional, Inhester, B., additional, Solanki, S., additional, Wiegelmann, T., additional, Zong, Q.‐G., additional, Bucik, R., additional, and Fornacon, K.‐H., additional
- Published
- 2009
- Full Text
- View/download PDF
160. First nonlinear force-free field extrapolations of SOLIS/VSM data
- Author
-
Thalmann, J. K., primary, Wiegelmann, T., additional, and Raouafi, N.-E., additional
- Published
- 2008
- Full Text
- View/download PDF
161. 3D Magnetic Field Configuration of the 2006 December 13 Flare Extrapolated with the Optimization Method
- Author
-
Guo, Y., primary, Ding, M. D., additional, Wiegelmann, T., additional, and Li, H., additional
- Published
- 2008
- Full Text
- View/download PDF
162. Evolution of the flaring active region NOAA 10540 as a sequence of nonlinear force-free field extrapolations
- Author
-
Thalmann, J. K., primary and Wiegelmann, T., additional
- Published
- 2008
- Full Text
- View/download PDF
163. Nonlinear Force‐free Field Modeling of a Solar Active Region around the Time of a Major Flare and Coronal Mass Ejection
- Author
-
Schrijver, C. J., primary, DeRosa, M. L., additional, Metcalf, T., additional, Barnes, G., additional, Lites, B., additional, Tarbell, T., additional, McTiernan, J., additional, Valori, G., additional, Wiegelmann, T., additional, Wheatland, M. S., additional, Amari, T., additional, Aulanier, G., additional, Démoulin, P., additional, Fuhrmann, M., additional, Kusano, K., additional, Régnier, S., additional, and Thalmann, J. K., additional
- Published
- 2008
- Full Text
- View/download PDF
164. A first step in reconstructing the solar corona self-consistently with a magnetohydrostatic model during solar activity minimum
- Author
-
Ruan, P., primary, Wiegelmann, T., additional, Inhester, B., additional, Neukirch, T., additional, Solanki, S. K., additional, and Feng, L., additional
- Published
- 2008
- Full Text
- View/download PDF
165. Can We Improve the Preprocessing of Photospheric Vector Magnetograms by the Inclusion of Chromospheric Observations?
- Author
-
Wiegelmann, T., primary, Thalmann, J. K., additional, Schrijver, C. J., additional, DeRosa, M. L., additional, and Metcalf, T. R., additional
- Published
- 2008
- Full Text
- View/download PDF
166. Nonlinear force‐free modeling of the solar coronal magnetic field
- Author
-
Wiegelmann, T., primary
- Published
- 2008
- Full Text
- View/download PDF
167. First Stereoscopic Coronal Loop Reconstructions from STEREO SECCHI Images
- Author
-
Feng, L., primary, Inhester, B., additional, Solanki, S. K., additional, Wiegelmann, T., additional, Podlipnik, B., additional, Howard, R. A., additional, and Wuelser, J.-P., additional
- Published
- 2007
- Full Text
- View/download PDF
168. Optimization approach for the computation of magnetohydrostatic coronal equilibria in spherical geometry
- Author
-
Wiegelmann, T., primary, Neukirch, T., additional, Ruan, P., additional, and Inhester, B., additional
- Published
- 2007
- Full Text
- View/download PDF
169. Theoretical modeling for the stereo mission
- Author
-
Aschwanden, Markus J., primary, Burlaga, L. F., additional, Kaiser, M. L., additional, Ng, C. K., additional, Reames, D. V., additional, Reiner, M. J., additional, Gombosi, T. I., additional, Lugaz, N., additional, Manchester, W., additional, Roussev, I. I., additional, Zurbuchen, T. H., additional, Farrugia, C. J., additional, Galvin, A. B., additional, Lee, M. A., additional, Linker, J. A., additional, Mikić, Z., additional, Riley, P., additional, Alexander, D., additional, Sandman, A. W., additional, Cook, J. W., additional, Howard, R. A., additional, Odstrčil, D., additional, Pizzo, V. J., additional, Kóta, J., additional, Liewer, P. C., additional, Luhmann, J. G., additional, Inhester, B., additional, Schwenn, R. W., additional, Solanki, S. K., additional, Vasyliunas, V. M., additional, Wiegelmann, T., additional, Blush, L., additional, Bochsler, P., additional, Cairns, I. H., additional, Robinson, P. A., additional, Bothmer, V., additional, Kecskemety, K., additional, Llebaria, A., additional, Maksimovic, M., additional, Scholer, M., additional, and Wimmer-Schweingruber, R. F., additional
- Published
- 2006
- Full Text
- View/download PDF
170. An optimization principle for the computation of MHD equilibria in the solar corona
- Author
-
Wiegelmann, T., primary and Neukirch, T., additional
- Published
- 2006
- Full Text
- View/download PDF
171. Testing non-linear force-free coronal magnetic field extrapolations with the Titov-Démoulin equilibrium
- Author
-
Wiegelmann, T., primary, Inhester, B., additional, Kliem, B., additional, Valori, G., additional, and Neukirch, T., additional
- Published
- 2006
- Full Text
- View/download PDF
172. Comparing magnetic field extrapolations with measurements of magnetic loops
- Author
-
Wiegelmann, T., primary, Lagg, A., additional, Solanki, S. K., additional, Inhester, B., additional, and Woch, J., additional
- Published
- 2005
- Full Text
- View/download PDF
173. Links between magnetic fields and plasma flows in a coronal hole
- Author
-
Wiegelmann, T., primary, Xia, L. D., additional, and Marsch, E., additional
- Published
- 2005
- Full Text
- View/download PDF
174. Coronal plasma flows and magnetic fields in solar active regions
- Author
-
Marsch, E., primary, Wiegelmann, T., additional, and Xia, L. D., additional
- Published
- 2004
- Full Text
- View/download PDF
175. Computing nonlinear force free coronal magnetic fields
- Author
-
Wiegelmann, T., primary and Neukirch, T., additional
- Published
- 2003
- Full Text
- View/download PDF
176. Evolution of magnetic helicity under kinetic magnetic reconnection: Part II B ≠ 0 reconnection
- Author
-
Wiegelmann, T., primary and Büchner, J., additional
- Published
- 2002
- Full Text
- View/download PDF
177. Evolution of magnetic helicity in the course of kinetic magnetic reconnection
- Author
-
Wiegelmann, T., primary and Büchner, J., additional
- Published
- 2001
- Full Text
- View/download PDF
178. Kinetic simulations of the coupling between current instabilities and reconnection in thin current sheets
- Author
-
Wiegelmann, T., primary and Büchner, J., additional
- Published
- 2000
- Full Text
- View/download PDF
179. A Comparison Between Nonlinear Force-Free Field and Potential Field Models Using Full-Disk SDO/HMI Magnetogram.
- Author
-
Tadesse, Tilaye, Wiegelmann, T., MacNeice, P. J., Inhester, B., Olson, K., and Pevtsov, A.
- Subjects
- *
NONLINEAR systems , *FORCE-free magnetic fields , *SOLAR magnetic fields , *MATHEMATICAL models , *DISKS (Astrophysics) , *CORONAL mass ejections , *SOLAR corona - Abstract
Measurements of magnetic fields and electric currents in the pre-eruptive corona are crucial to the study of solar eruptive phenomena, like flares and coronal mass ejections (CMEs). However, spectro-polarimetric measurements of certain photospheric lines permit a determination of the vector magnetic field only at the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field above multiple active regions with the help of a potential field and a nonlinear force-free field (NLFFF) extrapolation code over the full solar disk using Helioseismic and Magnetic Imager (SDO/HMI) data as boundary conditions. We compare projections of the resulting magnetic field lines with full-disk coronal images from the Atmospheric Imaging Assembly (SDO/AIA) for both models. This study has found that the NLFFF model reconstructs the magnetic configuration closer to observation than the potential field model for full-disk magnetic field extrapolation. We conclude that many of the trans-equatorial loops connecting the two solar hemispheres are current-free. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
180. Formation of thin current sheets in a quasistatic magnetotail model
- Author
-
Wiegelmann, T., primary and Schindler, K., additional
- Published
- 1995
- Full Text
- View/download PDF
181. FORCE-FREE FIELD MODELING OF TWIST AND BRAIDING-INDUCED MAGNETIC ENERGY IN AN ACTIVE-REGION CORONA.
- Author
-
Thalmann, J. K., Tiwari, S. K., and Wiegelmann, T.
- Subjects
MAGNETISM ,PHYSICS ,SOLAR corona ,MAGNETIC fields ,ELECTROMAGNETIC theory - Abstract
The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (∼100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
182. COMPARISON OF FORCE-FREE CORONAL MAGNETIC FIELD MODELING USING VECTOR FIELDS FROM HINODE AND SOLAR DYNAMICS OBSERVATORY.
- Author
-
THALMANN, J. K., TIWARI, S. K., and WIEGELMANN, T.
- Subjects
VECTOR fields ,HELIOSEISMOLOGY ,VECTOR data ,SPECTROPOLARIMETERS ,SOLAR optical telescopes - Abstract
Photospheric magnetic vector maps from two different instruments are used to model the nonlinear force-free coronal magnetic field above an active region. We use vector maps inferred from polarization measurements of the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (HMI) and the Solar Optical Telescope's Spectropolarimeter (SP) on board Hinode. Besides basing our model calculations on HMI data, we use both SP data of original resolution and scaled down to the resolution of HMI. This allows us to compare the model results based on data from different instruments and to investigate how a binning of high-resolution data affects the model outcome. The resulting three-dimensional magnetic fields are compared in terms of magnetic energy content and magnetic topology. We find stronger magnetic fields in the SP data, translating into a higher total magnetic energy of the SP models. The net Lorentz forces of the HMI and SP lower boundaries verify their force-free compatibility. We find substantial differences in the absolute estimates of the magnetic field energy but similar relative estimates, e.g., the fraction of excess energy and of the flux shared by distinct areas. The location and extension of neighboring connectivity domains differ and the SP model fields tend to be higher and more vertical. Hence, conclusions about the magnetic connectivity based on force-free field models are to be drawn with caution. We find that the deviations of the model solution when based on the lower-resolution SP data are small compared to the differences of the solutions based on data from different instruments. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
183. Particle kinetic analysis of a polar jet from SECCHI COR data.
- Author
-
L. Feng, Inhester, B., de Patoul, J., Wiegelmann, T., and W. Q. Gan
- Subjects
ASTRONOMICAL observations ,ELECTRON distribution ,SPACE vehicles ,MAGNETIC fields ,ASTROPHYSICS - Abstract
We analyze coronagraph observations of a polar jet observed by the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument suite onboard the Solar TErrestrial RElations Observatory (STEREO) spacecraft. Methods. In our analysis we compare the brightness distribution of the jet in white-light coronagraph images with a dedicated kinetic particle model. We obtain a consistent estimate of the time that the jet was launched from the solar surface and an approximate initial velocity distribution in the jet source. The method also allows us to check the consistency of the kinetic model. In this first application, we consider only gravity as the dominant force on the jet particles along the magnetic field. Results. We find that the kinetic model explains the observed brightness evolution well. The derived initiation time is consistent with the jet observations by the EUVI telescope at various wavelengths. The initial particle velocity distribution is fitted by Maxwellian distributions and we find deviations of the high-energy tail from the Maxwellian distributions. We estimated the jet's total electron content to have a mass between 3.2 × 10
14 and 1.8 × 1015 g. Mapping the integrated particle number along the jet trajectory to its source region and assuming a typical source region size, we obtain an initial electron density between 8 × 109 and 5 × 1010 cm-3 that is characteristic for the lower corona or the upper chromosphere. The total kinetic energy of all particles in the jet source region amounts from 2.1 × 1028 to 2.4 × 1029 erg. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
184. MESOGRANULATION AND THE SOLAR SURFACE MAGNETIC FIELD DISTRIBUTION.
- Author
-
CHAOUCHE, L. YELLES, MORENO-INSERTIS, F., PILLET, V. MARTÍNEZ, WIEGELMANN, T., BONET, J. A., KNÖLKER, M., RUBIO, L. R. BELLOT, DEL TORO INIESTA, J. C., BARTHOL, P., GANDORFER, A., SCHMIDT, W., and SOLANKI, S. K.
- Published
- 2011
- Full Text
- View/download PDF
185. RE-FLARING OF A POST-FLARE LOOP SYSTEM DRIVEN BY FLUX ROPE EMERGENCE AND TWISTING.
- Author
-
X. Cheng, M. D. Ding, Y. Guo, J. Zhang, J. Jing, and Wiegelmann, T.
- Published
- 2010
- Full Text
- View/download PDF
186. Evolution of the flaring active region NOAA 10540 as a sequence of?nonlinear force-free field extrapolations
- Author
-
Thalmann, J. and Wiegelmann, T.
- Abstract
Context. The solar corona is structured by magnetic fields. As direct measurements of the coronal magnetic field are not routinely available, it is extrapolated from photospheric vector magnetograms. When magnetic flux emerges from below the solar surface and expands into the corona, the coronal magnetic field is destabilized, leading to explosive phenomena like flares or coronal mass ejections.Aims. We study the temporal evolution of the flaring active region NOAA 10540 and are in particular interested in the free magnetic energy available to power the flares associated with it.Methods. We extrapolated photospheric vector magnetograms measured with the Solar Flare Telescope, located in Tokyo, into the corona with the help of a nonlinear force-free field model. This coronal magnetic field model is based on a well-tested multigrid-like optimization code with which we were able to estimate the energy content of the 3D coronal field, as well as an upper limit for its free magnetic energy. Furthermore, the evolution of the energy density with height and time was studied.Results. The coronal magnetic field energy in active region 10540 increases slowly during the three days before an M6.1 flare and drops significantly after it. We estimated the energy that was set free during this event as ?1025?J. A sequence of nonlinear force-free extrapolations of the coronal magnetic field shows a build up of magnetic energy before a flare and release of energy during the flare. The drop in magnetic energy of the active region is sufficient to power an M6.1 flare.
- Published
- 2008
187. A comparison of preprocessing methods for solar force-free magnetic field extrapolation
- Author
-
Fuhrmann, M., Seehafer, N., Valori, G., and Wiegelmann, T.
- Abstract
Context.Extrapolations of solar photospheric vector magnetograms into three-dimensional magnetic fields in the chromosphere and corona are usually done under the assumption that the fields are force-free. This condition is violated in the photosphere itself and a thin layer in the lower atmosphere above. The field calculations can be improved by preprocessing the photospheric magnetograms. The intention here is to remove a non-force-free component from the data.
- Published
- 2011
- Full Text
- View/download PDF
188. Magnetic structure of solar active region NOAA 11158.
- Author
-
Vemareddy, R., Ambastha, A., and Wiegelmann, T.
- Subjects
- *
SOLAR corona , *MAGNETIC fields , *HIGH temperature (Weather) , *CORONAL mass ejections , *MAGNETIC structure - Abstract
Magnetic fields in the solar corona are responsible for a wide range of phenomena. However, any direct measurements of the coronal magnetic fields are very difficult due to lack of suitable spectral lines, weak magnetic fields, and high temperatures. Therefore, one extrapolates photospheric field measurements into the corona. Owing to low coronal plasma β, we can apply a force-free model in lowest order to study the slow evolution of active region (AR) magnetic fields. On applying these models to AR 11158 and compared with coronal plasma tracers, we found that (1) the approximation of potential field to coronal structures over large length scales is a reasonable one, 2) linear force-free (LFF) assumption to AR coronal fields may not be applicable model as it assumes uniform twist over the entire AR, and 3) for modeling fields at sheared, stressed locations where energy release in the form of flares are usually observed, non-linear force free fields (NLFFF) seem to provide a good approximation. The maximum available free-energy profile shows step-wise decrease that is sufficient to power an M-class flare as observed. [ABSTRACT FROM AUTHOR]
- Published
- 2013
189. An overall view of temperature oscillations in the solar chromosphere with ALMA.
- Author
-
Jafarzadeh, S., Wedemeyer, S., Fleck, B., Stangalini, M., Jess, D. B., Morton, R. J., Szydlarski, M., Henriques, V. M. J., Zhu, X., Wiegelmann, T., Gómez, J. C. Guevara, Grant, S. D. T., Chen, B., Reardon, K., and White, S. M.
- Subjects
- *
SOLAR chromosphere , *SOLAR oscillations , *SOLAR temperature , *FAST Fourier transforms , *FREQUENCIES of oscillating systems , *DISTRIBUTION (Probability theory) - Abstract
By direct measurements of the gas temperature, the Atacama Large Millimeter/submillimeter Array (ALMA) has yielded a new diagnostic tool to study the solar chromosphere. Here, we present an overview of the brightness-temperature fluctuations from several high-quality and high-temporal-resolution (i.e. 1 and 2 s cadence) time series of images obtained during the first 2 years of solar observations with ALMA, in Band 3 and Band 6, centred at around 3mm (100 GHz) and 1.25mm (239 GHz), respectively. The various datasets represent solar regions with different levels of magnetic flux. We perform fast Fourier and Lomb-Scargle transforms to measure both the spatial structuring of dominant frequencies and the average global frequency distributions of the oscillations (i.e. averaged over the entire field of view). We find that the observed frequencies significantly vary from one dataset to another, which is discussed in terms of the solar regions captured by the observations (i.e. linked to their underlyingmagnetic topology). While the presence of enhanced power within the frequency range 3-5mHz is found for the most magnetically quiescent datasets, lower frequencies dominate when there is significant influence from strong underlying magnetic field concentrations (present inside and/or in the immediate vicinity of the observed field of view). We discuss here a number of reasons which could possibly contribute to the power suppression at around 5.5mHz in the ALMA observations. However, it remains unclear how other chromospheric diagnostics (with an exception of Ha line-core intensity) are unaffected by similar effects, i.e. they show very pronounced 3-min oscillations dominating the dynamics of the chromosphere, whereas only a very small fraction of all the pixels in the 10 ALMA datasets analysed here show peak power near 5.5 mHz. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
190. MODELING MAGNETIC FIELD STRUCTURE OF A SOLAR ACTIVE REGION CORONA USING NONLINEAR FORCE-FREE FIELDS IN SPHERICAL GEOMETRY
- Author
-
Wiegelmann, T [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany)]
- Published
- 2012
- Full Text
- View/download PDF
191. ON THE ROLE OF THE BACKGROUND OVERLYING MAGNETIC FIELD IN SOLAR ERUPTIONS
- Author
-
Wiegelmann, T [Max-Planck-Institut fuer Sonnensystemforschung (MPS), Max-Planck-Strasse 2, Katlenburg-Lindau (Germany)]
- Published
- 2012
- Full Text
- View/download PDF
192. RE-FLARING OF A POST-FLARE LOOP SYSTEM DRIVEN BY FLUX ROPE EMERGENCE AND TWISTING
- Author
-
Wiegelmann, T [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany)]
- Published
- 2010
- Full Text
- View/download PDF
193. Models and data analysis tools for the Solar Orbiter mission
- Author
-
Kamen Kozarev, Hardi Peter, X. Bonnin, Manolis K. Georgoulis, Alexis P. Rouillard, Daniele Spadaro, A. De Groof, Angels Aran, Raul Gomez-Herrero, M. Bouchemit, Alessandro Bemporad, R. A. Howard, A. S. Brun, F. Espinosa Lara, E. Budnik, S. I. Jones, N. E. Raouafi, Rita Ventura, J. C. del Toro Iniesta, David Pérez-Suárez, Silvano Fineschi, Miho Janvier, Jon A. Linker, Thomas Wiegelmann, Teresa Nieves-Chinchilla, Timothy S. Horbury, L. R. Bellot Rubio, A. Giunta, Nicolas Poirier, Bogdan Nicula, Andreas Lagg, Kévin Dalmasse, Jim M. Raines, Michael Lavarra, Carl J. Henney, Holly Gilbert, S. Parenti, D. Orozco Suárez, Mikel Indurain, David R. Williams, David Berghmans, L. Etesi, Andrzej Fludra, F. Auchère, Daniel Müller, Vincent Génot, Y. Wu, Jens Pomoell, Marco Romoli, N. Rich, A. Kouloumvakos, S. Caminade, Benoit Lavraud, Antoine Strugarek, G. Mann, Philippe Louarn, Arnaud Masson, J. Carlyle, L. Sanchez, I. Zouganelis, Baptiste Cecconi, Eric Buchlin, Javier Rodriguez-Pacheco, T. Amari, M. Haberreiter, Thomas Straus, C. Watson, Alexander Warmuth, Johann Hirzberger, Säm Krucker, Athanasios Papaioannou, Tino L. Riethmüller, Pedro Osuna, Cis Verbeeck, Shane A. Maloney, William T. Thompson, Luciano Rodriguez, Sami K. Solanki, H. Önel, Paolo Pagano, I. Cernuda, Andrei Fedorov, Luca Teriaca, E. Kraaikamp, Nicole Vilmer, Rui F. Pinto, S. Dolei, Simon Plunkett, Roberto Susino, Etienne Pariat, Andrew Walsh, Clementina Sasso, Vincenzo Andretta, Christopher J. Owen, Donald M. Hassler, S. Guest, O. C. St. Cyr, Anastasios Anastasiadis, Ester Antonucci, Angelos Vourlidas, Andrei Zhukov, Milan Maksimovic, C. N. Arge, Matthieu Alexandre, Joseph M. Davila, Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Department of Physics, Space Physics Research Group, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Naval Research Laboratory (NRL), European Space Astronomy Centre (ESAC), European Space Agency (ESA), INAF - Osservatorio Astrofisico di Torino (OATo), Istituto Nazionale di Astrofisica (INAF), INAF - Osservatorio Astrofisico di Catania (OACT), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), National Center for Atmospheric Research [Boulder] (NCAR), Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Stéréochimie et Interactions Moléculaires (STIM), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Royal Observatory of Belgium [Brussels] (ROB), Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, Centre de Recherche en Transplantation et Immunologie (U1064 Inserm - CRTI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Research and Scientific Support Department, ESTEC (RSSD), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA)-European Space Agency (ESA), INAF - Osservatorio Astronomico di Capodimonte (OAC), Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Solar-Terrestrial Centre of Excellence [Brussels] (STCE), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), NOVELTIS [Sté], Department of Physics and Astronomy [Iowa City], University of Iowa [Iowa City], NASA Goddard Space Flight Center (GSFC), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Blackett Laboratory, Imperial College London, EADS Astrium SAS, Science Applications International Corporation (SAIC), Space Science and Applications, Los Alamos National Laboratory (LANL), Centre d'étude spatiale des rayonnements (CESR), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Trinity College Dublin, Leibniz-Institut für Astrophysik Potsdam (AIP), Laboratoire Francis PERRIN (LFP - URA 2453), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut d'Electronique du Solide et des Systèmes (InESS), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Centro de Investigacion Cientifica y de Education Superior de Ensenada [Mexico] (CICESE), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Ecosystèmes et paysages montagnards (UR EPGR), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF), Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (INFN, Sezione di Napoli), Istituto Nazionale di Fisica Nucleare (INFN), Max Planck Institute for Solar System Research (MPS), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Microbiology Department, St. Jame's Hospital, European Research Council, European Commission, Science and Technology Facilities Council (UK), Durham University, Centre National D'Etudes Spatiales (France), Helmholtz Association, German Centre for Air and Space Travel, Ministerio de Ciencia, Innovación y Universidades (España), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Agence Spatiale Européenne = European Space Agency (ESA), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE31-0006,COROSHOCK,EVALUER LE ROLE DU CHOC COMME ACCELERATEUR DE PARTICULES SOLAIRES(2017), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO), Rouillard A.P., Pinto R.F., Vourlidas A., De Groof A., Thompson W.T., Bemporad A., Dolei S., Indurain M., Buchlin E., Sasso C., Spadaro D., Dalmasse K., Hirzberger J., Zouganelis I., Strugarek A., Brun A.S., Alexandre M., Berghmans D., Raouafi N.E., Wiegelmann T., Pagano P., Arge C.N., Nieves-Chinchilla T., Lavarra M., Poirier N., Amari T., Aran A., Andretta V., Antonucci E., Anastasiadis A., Auchere F., Bellot Rubio L., Nicula B., Bonnin X., Bouchemit M., Budnik E., Caminade S., Cecconi B., Carlyle J., Cernuda I., Davila J.M., Etesi L., Espinosa Lara F., Fedorov A., Fineschi S., Fludra A., Genot V., Georgoulis M.K., Gilbert H.R., Giunta A., Gomez-Herrero R., Guest S., Haberreiter M., Hassler D., Henney C.J., Howard R.A., Horbury T.S., Janvier M., Jones S.I., Kozarev K., Kraaikamp E., Kouloumvakos A., Krucker S., Lagg A., Linker J., Lavraud B., Louarn P., Maksimovic M., Maloney S., Mann G., Masson A., Muller D., Onel H., Osuna P., Orozco Suarez D., Owen C.J., Papaioannou A., Perez-Suarez D., Rodriguez-Pacheco J., Parenti S., Pariat E., Peter H., Plunkett S., Pomoell J., Raines J.M., Riethmuller T.L., Rich N., Rodriguez L., Romoli M., Sanchez L., Solanki S.K., St Cyr O.C., Straus T., Susino R., Teriaca L., Del Toro Iniesta J.C., Ventura R., Verbeeck C., Vilmer N., Warmuth A., Walsh A.P., Watson C., Williams D., Wu Y., Zhukov A.N., Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), vilmer, nicole, and University of St Andrews. Applied Mathematics
- Subjects
010504 meteorology & atmospheric sciences ,corona [Sun] ,Solar wind ,Astrophysics ,[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,7. Clean energy ,01 natural sciences ,law.invention ,Data acquisition ,law ,Coronal mass ejection ,general [Sun] ,QB Astronomy ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Sun: magnetic fields ,QC ,ComputingMilieux_MISCELLANEOUS ,QB ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,3rd-DAS ,energetic particles ,CORONAL MASS EJECTIONS ,numerical modeling ,magnetic fields [Sun] ,solar wind ,Physics::Space Physics ,Systems engineering ,Astrophysics::Earth and Planetary Astrophysics ,atmosphere [Sun] ,fundamental parameters [Sun] ,Sun: general ,FORCE-FREE FIELD ,Sun: fundamental parameters ,Solar radius ,Context (language use) ,STREAMER STRUCTURE ,Orbiter ,0103 physical sciences ,OPTIMIZATION APPROACH ,[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,POLARIZATION MEASUREMENTS ,Sun: Solar wind ,3-DIMENSIONAL STRUCTURE ,0105 earth and related environmental sciences ,Spacecraft ,business.industry ,Sun: corona ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,solar corona ,MAGNETIC-FLUX ROPES ,Astronomy and Astrophysics ,SHOCKS DRIVEN ,115 Astronomy, Space science ,SPECTRAL-LINES ,QC Physics ,13. Climate action ,Space and Planetary Science ,business ,Heliosphere ,Sun: atmosphere ,ELECTRON-DENSITY - Abstract
All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbert, H. R.; Giunta, A.; Gomez-Herrero, R.; Guest, S.; Haberreiter, M.; Hassler, D.; Henney, C. J.; Howard, R. A.; Horbury, T. S.; Janvier, M.; Jones, S. I.; Kozarev, K.; Kraaikamp, E.; Kouloumvakos, A.; Krucker, S.; Lagg, A.; Linker, J.; Lavraud, B.; Louarn, P.; Maksimovic, M.; Maloney, S.; Mann, G.; Masson, A.; Müller, D.; Önel, H.; Osuna, P.; Orozco Suarez, D.; Owen, C. J.; Papaioannou, A.; Pérez-Suárez, D.; Rodriguez-Pacheco, J.; Parenti, S.; Pariat, E.; Peter, H.; Plunkett, S.; Pomoell, J.; Raines, J. M.; Riethmüller, T. L.; Rich, N.; Rodriguez, L.; Romoli, M.; Sanchez, L.; Solanki, S. K.; St Cyr, O. C.; Straus, T.; Susino, R.; Teriaca, L.; del Toro Iniesta, J. C.; Ventura, R.; Verbeeck, C.; Vilmer, N.; Warmuth, A.; Walsh, A. P.; Watson, C.; Williams, D.; Wu, Y.; Zhukov, A. N.-- Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. The Solar Orbiter spacecraft will be equipped with a wide range of remote-sensing (RS) and in situ (IS) instruments to record novel and unprecedented measurements of the solar atmosphere and the inner heliosphere. To take full advantage of these new datasets, tools and techniques must be developed to ease multi-instrument and multi-spacecraft studies. In particular the currently inaccessible low solar corona below two solar radii can only be observed remotely. Furthermore techniques must be used to retrieve coronal plasma properties in time and in three dimensional (3D) space. Solar Orbiter will run complex observation campaigns that provide interesting opportunities to maximise the likelihood of linking IS data to their source region near the Sun. Several RS instruments can be directed to specific targets situated on the solar disk just days before data acquisition. To compare IS and RS, data we must improve our understanding of how heliospheric probes magnetically connect to the solar disk. Aims. The aim of the present paper is to briefly review how the current modelling of the Sun and its atmosphere can support Solar Orbiter science. We describe the results of a community-led effort by European Space Agency's Modelling and Data Analysis Working Group (MADAWG) to develop different models, tools, and techniques deemed necessary to test different theories for the physical processes that may occur in the solar plasma. The focus here is on the large scales and little is described with regards to kinetic processes. To exploit future IS and RS data fully, many techniques have been adapted to model the evolving 3D solar magneto-plasma from the solar interior to the solar wind. A particular focus in the paper is placed on techniques that can estimate how Solar Orbiter will connect magnetically through the complex coronal magnetic fields to various photospheric and coronal features in support of spacecraft operations and future scientific studies. Methods. Recent missions such as STEREO, provided great opportunities for RS, IS, and multi-spacecraft studies. We summarise the achievements and highlight the challenges faced during these investigations, many of which motivated the Solar Orbiter mission. We present the new tools and techniques developed by the MADAWG to support the science operations and the analysis of the data from the many instruments on Solar Orbiter. Results. This article reviews current modelling and tool developments that ease the comparison of model results with RS and IS data made available by current and upcoming missions. It also describes the modelling strategy to support the science operations and subsequent exploitation of Solar Orbiter data in order to maximise the scientific output of the mission. Conclusions. The on-going community effort presented in this paper has provided new models and tools necessary to support mission operations as well as the science exploitation of the Solar Orbiter data. The tools and techniques will no doubt evolve significantly as we refine our procedure and methodology during the first year of operations of this highly promising mission. © 2020 A. P. Rouillard et al., Solar Orbiter is a joint ESA and NASA mission. A. Vourlidas' Solar Orbiter effort is supported by NRL grant N00173-16-1-G029. P. Pagano would like to thank D. H. Mackay and S. L. Yardley for their valuable contributions, the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214), and the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (http://www.dirac.ac.uk).This equipment was funded by a BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/K00087X/1, DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure. A. Rouillard, V. Genot, M. Janvier, Elie Soubrier, F. Auchere, E. Buchlin and E. Pariat acknowledge support from the French space agency (Centre National d'Etudes Spatiales; CNES; https://cnes.fr/fr) that funds activity in plasma physics data center (Centre de Donnees de la Physique des Plasmas; CDPP; http://cdpp.eu/) and the Multi Experiment Data and Operation Center (MEDOC; https://idoc.ias.u-psud.fr/MEDOC), and the space weather team in Toulouse (Solar-Terrestrial Observations and Modelling Service; STORMS; http://storms-service.irap.omp.eu/).This includes funding for Gaia-DEM, the data mining tools AMDA (http://amda.cdpp.eu/), CLWEB (clweb.cesr. fr/) and the propagation tool (http://propagationtool.cdpp.eu).R.Pinto, M. Lavarra, Y. Wu and A. Kouloumvakos acknowledge financial support from the ANR project SLOW_ SOURCE No. ANR-17-CE31-0006-01, ANR project COROSHOCK No. ANR-18-ERC1-0006-01 and FP7 HELCATS project https://www.helcats-fp7.eu/under the FP7 EU contract number 606692. A. Warmuth acknowledges the support by DLR under grant No. 50 QL 0001. The STEREO SECCHI data are produced by a consortium of RAL (UK), NRL (USA), LMSAL (USA), GSFC (USA), MPS (Germany), CSL (Belgium), IOTA (France) and IAS (France). The ACE data were obtained from the ACE science center. The WIND data were obtained from the Space Physics Data Facility. Javier Rodriguez-Pacheco acknowledges Spanish Project: FEDER/MCIU-AEI/Project ESP2017-88436-R.
- Published
- 2020
- Full Text
- View/download PDF
194. CME-HSS Interaction and Characteristics Tracked from Sun to Earth.
- Author
-
Heinemann SG, Temmer M, Farrugia CJ, Dissauer K, Kay C, Wiegelmann T, Dumbović M, Veronig AM, Podladchikova T, Hofmeister SJ, Lugaz N, and Carcaboso F
- Abstract
In a thorough study, we investigate the origin of a remarkable plasma and magnetic field configuration observed in situ on June 22, 2011, near L1, which appears to be a magnetic ejecta (ME) and a shock signature engulfed by a solar wind high-speed stream (HSS). We identify the signatures as an Earth-directed coronal mass ejection (CME), associated with a C7.7 flare on June 21, 2011, and its interaction with a HSS, which emanates from a coronal hole (CH) close to the launch site of the CME. The results indicate that the major interaction between the CME and the HSS starts at a height of 1.3 R ⊙ up to 3 R ⊙ . Over that distance range, the CME undergoes a strong north-eastward deflection of at least 30 ∘ due to the open magnetic field configuration of the CH. We perform a comprehensive analysis for the CME-HSS event using multi-viewpoint data (from the Solar TErrestrial RElations Observatories , the Solar and Heliospheric Observatory and the Solar Dynamics Observatory ), and combined modeling efforts (nonlinear force-free field modeling, Graduated Cylindrical Shell CME modeling, and the Forecasting a CME's Altered Trajectory - ForeCAT model). We aim at better understanding its early evolution and interaction process as well as its interplanetary propagation and related in situ signatures, and finally the resulting impact on the Earth's magnetosphere., Competing Interests: Disclosure of Potential Conflicts of InterestThe authors declare that they have no conflicts of interest., (© The Author(s) 2019.)
- Published
- 2019
- Full Text
- View/download PDF
195. Global Non-Potential Magnetic Models of the Solar Corona During the March 2015 Eclipse.
- Author
-
Yeates AR, Amari T, Contopoulos I, Feng X, Mackay DH, Mikić Z, Wiegelmann T, Hutton J, Lowder CA, Morgan H, Petrie G, Rachmeler LA, Upton LA, Canou A, Chopin P, Downs C, Druckmüller M, Linker JA, Seaton DB, and Török T
- Abstract
Seven different models are applied to the same problem of simulating the Sun's coronal magnetic field during the solar eclipse on 2015 March 20. All of the models are non-potential, allowing for free magnetic energy, but the associated electric currents are developed in significantly different ways. This is not a direct comparison of the coronal modelling techniques, in that the different models also use different photospheric boundary conditions, reflecting the range of approaches currently used in the community. Despite the significant differences, the results show broad agreement in the overall magnetic topology. Among those models with significant volume currents in much of the corona, there is general agreement that the ratio of total to potential magnetic energy should be approximately 1.4. However, there are significant differences in the electric current distributions; while static extrapolations are best able to reproduce active regions, they are unable to recover sheared magnetic fields in filament channels using currently available vector magnetogram data. By contrast, time-evolving simulations can recover the filament channel fields at the expense of not matching the observed vector magnetic fields within active regions. We suggest that, at present, the best approach may be a hybrid model using static extrapolations but with additional energization informed by simplified evolution models. This is demonstrated by one of the models.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.