299 results on '"Wachter-Zeh, Antonia"'
Search Results
252. Codes Correcting a Burst of Deletions or Insertions
- Author
-
Schoeny, Clayton, primary, Wachter-Zeh, Antonia, additional, Gabrys, Ryan, additional, and Yaakobi, Eitan, additional
- Published
- 2017
- Full Text
- View/download PDF
253. List Decoding of Crisscross Errors
- Author
-
Wachter-Zeh, Antonia, primary
- Published
- 2017
- Full Text
- View/download PDF
254. Timing Attack Resilient Decoding Algorithms for Physical Unclonable Functions
- Author
-
Puchinger, Sven, Müelich, Sven, Wachter-Zeh, Antonia, Bossert, Martin, Puchinger, Sven, Müelich, Sven, Wachter-Zeh, Antonia, and Bossert, Martin
- Abstract
This paper deals with the application of list decoding of Reed--Solomon codes to a concatenated code for key reproduction using Physical Unclonable Functions. The resulting codes achieve a higher error-correction performance at the same code rate than known schemes in this scenario. We also show that their decoding algorithms can be protected from side-channel attacks on the runtime both by masking techniques and by directly modifying the algorithms to have constant runtime., Comment: 6 pages, accepted for publication at the 11th International ITG Conference on Systems, Communications and Coding (SCC 2017)
- Published
- 2016
255. Vector Network Coding Based on Subspace Codes Outperforms Scalar Linear Network Coding
- Author
-
Etzion, Tuvi, Wachter-Zeh, Antonia, Etzion, Tuvi, and Wachter-Zeh, Antonia
- Abstract
This paper considers vector network coding based on rank-metric codes and subspace codes. Our main result is that vector network coding can significantly reduce the required field size compared to scalar linear network coding in the same multicast network. The achieved gap between the field size of scalar and vector network coding is in the order of $q^{(\ell-1)t^2/\ell}-q^t$, for any $q \geq 2$, where $t$ denotes the dimension of the vector solution, and the number of messages is $2 \ell$, ${\ell \geq 2}$. Previously, only a gap of constant size had been shown. This implies also the same gap between the field size in linear and non-linear scalar network coding for multicast networks. Similar results are given for any number of odd messages greater than two. The results are obtained by considering several multicast networks which are variations of the well-known combination network., Comment: Accepted for ISIT 2016. Short version of arXiv:1512.06352
- Published
- 2016
256. Codes Correcting a Burst of Deletions or Insertions
- Author
-
Schoeny, Clayton, Wachter-Zeh, Antonia, Gabrys, Ryan, Yaakobi, Eitan, Schoeny, Clayton, Wachter-Zeh, Antonia, Gabrys, Ryan, and Yaakobi, Eitan
- Abstract
This paper studies codes that correct bursts of deletions. Namely, a code will be called a $b$-burst-deletion-correcting code if it can correct a deletion of any $b$ consecutive bits. While the lower bound on the redundancy of such codes was shown by Levenshtein to be asymptotically $\log(n)+b-1$, the redundancy of the best code construction by Cheng et al. is $b(\log (n/b+1))$. In this paper we close on this gap and provide codes with redundancy at most $\log(n) + (b-1)\log(\log(n)) +b -\log(b)$. We also derive a non-asymptotic upper bound on the size of $b$-burst-deletion-correcting codes and extend the burst deletion model to two more cases: 1) A deletion burst of at most $b$ consecutive bits and 2) A deletion burst of size at most $b$ (not necessarily consecutive). We extend our code construction for the first case and study the second case for $b=3,4$. The equivalent models for insertions are also studied and are shown to be equivalent to correcting the corresponding burst of deletions.
- Published
- 2016
257. Sub-Quadratic Decoding of Gabidulin Codes
- Author
-
Puchinger, Sven, Wachter-Zeh, Antonia, Puchinger, Sven, and Wachter-Zeh, Antonia
- Abstract
This paper shows how to decode errors and erasures with Gabidulin codes in sub-quadratic time in the code length, improving previous algorithms which had at least quadratic complexity. The complexity reduction is achieved by accelerating operations on linearized polynomials. In particular, we present fast algorithms for division, multi-point evaluation and interpolation of linearized polynomials and show how to efficiently compute minimal subspace polynomials., Comment: 5 pages, accepted at IEEE International Symposium on Information Theory 2016
- Published
- 2016
258. Improved Decoding of Partial Unit Memory Codes Using List Decoding of Reed–Solomon Codes
- Author
-
Puchinger, Sven, Wachter-Zeh, Antonia, and Bossert, Martin
- Subjects
Electric engineering ,DECODIERUNG (INFORMATIONSTHEORIE) ,ddc:621.3 ,SIGNAL TRANSMISSION + DATA COMMUNICATION (TELECOMMUNICATIONS) ,REED-SOLOMON CODES (INFORMATIONSTHEORIE) ,SIGNALÜBERTRAGUNG + DATENKOMMUNIKATION (NACHRICHTENTECHNIK) ,DECODING (INFORMATION THEORY) ,REED-SOLOMON CODES (INFORMATION THEORY) ,FOS: Mathematics ,ddc:510 ,Mathematics - Published
- 2014
- Full Text
- View/download PDF
259. Vector network coding based on subspace codes outperforms scalar linear network coding
- Author
-
Etzion, Tuvi, primary and Wachter-Zeh, Antonia, additional
- Published
- 2016
- Full Text
- View/download PDF
260. Codes correcting a burst of deletions or insertions
- Author
-
Schoeny, Clayton, primary, Wachter-Zeh, Antonia, additional, Gabrys, Ryan, additional, and Yaakobi, Eitan, additional
- Published
- 2016
- Full Text
- View/download PDF
261. Sub-quadratic decoding of Gabidulin codes
- Author
-
Puchinger, Sven, primary and Wachter-Zeh, Antonia, additional
- Published
- 2016
- Full Text
- View/download PDF
262. Improved erasure list decoding locally repairable codes using alphabet-dependent list recovery
- Author
-
Zeh, Alexander, primary and Wachter-Zeh, Antonia, additional
- Published
- 2016
- Full Text
- View/download PDF
263. Some Gabidulin Codes Cannot Be List Decoded Efficiently at any Radius
- Author
-
Raviv, Netanel, primary and Wachter-Zeh, Antonia, additional
- Published
- 2016
- Full Text
- View/download PDF
264. Optimal Ferrers Diagram Rank-Metric Codes
- Author
-
Etzion, Tuvi, primary, Gorla, Elisa, additional, Ravagnani, Alberto, additional, and Wachter-Zeh, Antonia, additional
- Published
- 2016
- Full Text
- View/download PDF
265. Codes for Partially Stuck-At Memory Cells
- Author
-
Wachter-Zeh, Antonia, primary and Yaakobi, Eitan, additional
- Published
- 2016
- Full Text
- View/download PDF
266. Vector Network Coding Based on Subspace Codes Outperforms Scalar Linear Network Coding
- Author
-
Etzion, Tuvi, Wachter-Zeh, Antonia, Etzion, Tuvi, and Wachter-Zeh, Antonia
- Abstract
This paper considers vector network coding solutions based on rank-metric codes and subspace codes. The main result of this paper is that vector solutions can significantly reduce the required alphabet size compared to the optimal scalar linear solution for the same multicast network. The multicast networks considered in this paper have one source with $h$ messages, and the vector solution is over a field of size $q$ with vectors of length~$t$. For a given network, let the smallest field size for which the network has a scalar linear solution be $q_s$, then the gap in the alphabet size between the vector solution and the scalar linear solution is defined to be $q_s-q^t$. In this contribution, the achieved gap is $q^{(h-2)t^2/h + o(t)}$ for any $q \geq 2$ and any even $h \geq 4$. If $h \geq 5$ is odd, then the achieved gap of the alphabet size is $q^{(h-3)t^2/(h-1) + o(t)}$. Previously, only a gap of size size one had been shown for networks with a very large number of messages. These results imply the same gap of the alphabet size between the optimal scalar linear and some scalar nonlinear network coding solution for multicast networks. For three messages, we also show an advantage of vector network coding, while for two messages the problem remains open. Several networks are considered, all of them are generalizations and modifications of the well-known combination networks. The vector network codes that are used as solutions for those networks are based on subspace codes, particularly subspace codes obtained from rank-metric codes. Some of these codes form a new family of subspace codes, which poses a new research problem., Comment: to appear in IEEE Transactions on Information Theory
- Published
- 2015
267. Fast Operations on Linearized Polynomials and their Applications in Coding Theory
- Author
-
Puchinger, Sven, Wachter-Zeh, Antonia, Puchinger, Sven, and Wachter-Zeh, Antonia
- Abstract
This paper considers fast algorithms for operations on linearized polynomials. We propose a new multiplication algorithm for skew polynomials (a generalization of linearized polynomials) which has sub-quadratic complexity in the polynomial degree $s$, independent of the underlying field extension degree~$m$. We show that our multiplication algorithm is faster than all known ones when $s \leq m$. Using a result by Caruso and Le Borgne (2017), this immediately implies a sub-quadratic division algorithm for linearized polynomials for arbitrary polynomial degree $s$. Also, we propose algorithms with sub-quadratic complexity for the $q$-transform, multi-point evaluation, computing minimal subspace polynomials, and interpolation, whose implementations were at least quadratic before. Using the new fast algorithm for the $q$-transform, we show how matrix multiplication over a finite field can be implemented by multiplying linearized polynomials of degrees at most $s=m$ if an elliptic normal basis of extension degree $m$ exists, providing a lower bound on the cost of the latter problem. Finally, it is shown how the new fast operations on linearized polynomials lead to the first error and erasure decoding algorithm for Gabidulin codes with sub-quadratic complexity., Comment: 25 pages, submitted to Journal of Symbolic Computation
- Published
- 2015
268. Codes for Partially Stuck-at Memory Cells
- Author
-
Wachter-Zeh, Antonia, Yaakobi, Eitan, Wachter-Zeh, Antonia, and Yaakobi, Eitan
- Abstract
In this work, we study a new model of defect memory cells, called partially stuck-at memory cells, which is motivated by the behavior of multi-level cells in non-volatile memories such as flash memories and phase change memories. If a cell can store the $q$ levels $0, 1, \dots, q-1$, we say that it is partially stuck-at level $s$, where $1 \leq s \leq q-1$, if it can only store values which are at least $s$. We follow the common setup where the encoder knows the positions and levels of the partially stuck-at cells whereas the decoder does not. Our main contribution in the paper is the study of codes for masking $u$ partially stuck-at cells. We first derive lower and upper bounds on the redundancy of such codes. The upper bounds are based on two trivial constructions. We then present three code constructions over an alphabet of size $q$, by first considering the case where the cells are partially stuck-at level $s=1$. The first construction works for $u
- Published
- 2015
269. Some Gabidulin Codes cannot be List Decoded Efficiently at any Radius
- Author
-
Raviv, Netanel, Wachter-Zeh, Antonia, Raviv, Netanel, and Wachter-Zeh, Antonia
- Abstract
Gabidulin codes can be seen as the rank-metric equivalent of Reed-Solomon codes. It was recently proven, using subspace polynomials, that Gabidulin codes cannot be list decoded beyond the so-called Johnson radius. In another result, cyclic subspace codes were constructed by inspecting the connection between subspaces and their subspace polynomials. In this paper, these subspace codes are used to prove two bounds on the list size in decoding certain Gabidulin codes. The first bound is an existential one, showing that exponentially-sized lists exist for codes with specific parameters. The second bound presents exponentially-sized lists explicitly, for a different set of parameters. Both bounds rule out the possibility of efficiently list decoding several families of Gabidulin codes for any radius beyond half the minimum distance. Such a result was known so far only for non-linear rank-metric codes, and not for Gabidulin codes. Using a standard operation called lifting, identical results also follow for an important class of constant dimension subspace codes.
- Published
- 2015
270. Decoding of block and convolutional codes in rank metric
- Author
-
Wachter-Zeh, Antonia, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Université Rennes 1, Pierre Loidreau, Martin Bossert, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Rennes, Universität Ulm, AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), and STAR, ABES
- Subjects
Convolutions (Mathematics) ,Decoding ,[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM] ,[MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT] ,[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM] ,[ MATH.MATH-IT ] Mathematics [math]/Information Theory [math.IT] ,Rank-metric codes ,[MATH.MATH-IT] Mathematics [math]/Information Theory [math.IT] ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Décodage ,Codierungstheorie ,Nachrichtentechnik ,Coding theory ,ddc:620 ,Codes en métrique rang ,Error-correcting codes - Abstract
Rank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and is nowadays called Gabidulin codes. This dissertation considers block and convolutional codes in rank metric with the objective of designing and investigating efficient decoding algorithms for both code classes. After giving a brief introduction to codes in rank metric and their properties, we first derive sub-quadratic-time algorithms for operations with linearized polynomials and state a new bounded minimum distance decoding algorithm for Gabidulin codes. This algorithm directly outputs the linearized evaluation polynomial of the estimated codeword by means of the (fast) linearized Euclidean algorithm. Second, we present a new interpolation-based algorithm for unique and (not necessarily polynomial-time) list decoding of interleaved Gabidulin codes. This algorithm decodes most error patterns of rank greater than half the minimum rank distance by efficiently solving two linear systems of equations. As a third topic, we investigate the possibilities of polynomial-time list decoding of rank-metric codes in general and Gabidulin codes in particular. For this purpose, we derive three bounds on the list size. These bounds show that the behavior of the list size for both, Gabidulin and rank-metric block codes in general, is significantly different from the behavior of Reed–Solomon codes and block codes in Hamming metric, respectively. The bounds imply, amongst others, that there exists no polynomial upper bound on the list size in rank metric as the Johnson bound in Hamming metric, which depends only on the length and the minimum rank distance of the code. Finally, we introduce a special class of convolutional codes in rank metric and propose an efficient decoding algorithm for these codes. These convolutional codes are (partial) unit memory codes, built upon rank-metric block codes. This structure is crucial in the decoding process since we exploit the efficient decoders of the underlying block codes in order to decode the convolutional code., Les code en métrique rang attirent l’attention depuis quelques années en raison de leur application possible au codage réseau linéaire aléatoire (random linear network coding), à la cryptographie à clé publique, au codage espace-temps et aux systèmes de stockage distribué. Une construction de codes algébriques en métrique rang de cardinalité optimale a été introduite par Delsarte, Gabidulin et Roth il y a quelques décennies. Ces codes sont considérés comme l’équivalent des codes de Reed – Solomon et ils sont basés sur l’évaluation de polynômes linéarisés. Ils sont maintenant appelés les codes de Gabidulin. Cette thèse traite des codes en bloc et des codes convolutifs en métrique rang avec l’objectif de développer et d’étudier des algorithmes de décodage efficaces pour ces deux classes de codes. Après une introduction dans le chapitre 1, le chapitre 2 fournit une introduction rapide aux codes en métrique rang et leurs propriétés. Dans le chapitre 3, on considère des approches efficaces pour décoder les codes de Gabidulin. Lapremière partie de ce chapitre traite des algorithmes rapides pour les opérations sur les polynômes linéarisés. La deuxième partie de ce chapitre résume tout d’abord les techniques connues pour le décodage jusqu’à la moitié de la distance rang minimale (bounded minimum distance decoding) des codes de Gabidulin, qui sont basées sur les syndromes et sur la résolution d’une équation clé. Ensuite, nous présentons et nous prouvons un nouvel algorithme efficace pour le décodage jusqu’à la moitié de la distance minimale des codes de Gabidulin. Le chapitre 4 est consacré aux codes de Gabidulin entrelacés et à leur décodage au-delà de la moitié de la distance rang minimale. Dans ce chapitre, nous décrivons d’abord les deux approches connues pour le décodage unique et nous tirons une relation entre eux et leurs probabilités de défaillance. Ensuite, nous présentons un nouvel algorithme de décodage des codes de Gabidulin entrelacés basé sur l’interpolation des polynômes linéarisés. Nous prouvons la justesse de ses deux étapes principales — l’interpolation et la recherche des racines — et montrons que chacune d’elles peut être effectuée en résolvant un système d’équations linéaires. Jusqu’à présent, aucun algorithme de décodage en liste en temps polynomial pour les codes de Gabidulin n’est connu et en fait il n’est même pas clair que cela soit possible. Cela nous a motivé à étudier, dans le chapitre 5, les possibilités du décodage en liste en temps polynomial des codes en métrique rang. Cette analyse est effectuée par le calcul de bornes sur la taille de la liste des codes en métriques rang en général et des codes de Gabidulin en particulier. Étonnamment, les trois nouvelles bornes révèlent toutes un comportement des codes en métrique rang qui est complètement différent de celui des codes en métrique de Hamming. Enfin, dans le chapitre 6, on introduit des codes convolutifs en métrique rang. Ce qui nous motive à considérer ces codes est le codage réseau linéaire aléatoire multi-shot, où le réseau inconnu varie avec le temps et est utilisé plusieurs fois. Les codes convolutifs créent des dépendances entre les utilisations différentes du réseau aun de se adapter aux canaux difficiles. Basé sur des codes en bloc en métrique rang (en particulier les codes de Gabidulin), nous donnons deux constructions explicites des codes convolutifs en métrique rang. Les codes en bloc sous-jacents nous permettent de développer un algorithme de décodage des erreurs et des effacements efficace pour la deuxième construction, qui garantit de corriger toutes les séquences d’erreurs de poids rang jusqu’à la moitié de la distance rang active des lignes. Un résumé et un aperçu des problèmes futurs de recherche sont donnés à la fin de chaque chapitre. Finalement, le chapitre 7 conclut cette thèse.
- Published
- 2013
271. Bounds on List Decoding Gabidulin Codes
- Author
-
Wachter-Zeh , Antonia, Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
FOS: Computer and information sciences ,[ INFO.INFO-IT ] Computer Science [cs]/Information Theory [cs.IT] ,[INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] ,Computer Science - Information Theory ,Information Theory (cs.IT) ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,[MATH.MATH-IT]Mathematics [math]/Information Theory [math.IT] ,[ MATH.MATH-IT ] Mathematics [math]/Information Theory [math.IT] ,Data_CODINGANDINFORMATIONTHEORY ,Computer Science::Information Theory - Abstract
An open question about Gabidulin codes is whether polynomial-time list decoding beyond half the minimum distance is possible or not. In this contribution, we give a lower and an upper bound on the list size, i.e., the number of codewords in a ball around the received word. The lower bound shows that if the radius of this ball is greater than the Johnson radius, this list size can be exponential and hence, no polynomial-time list decoding is possible. The upper bound on the list size uses subspace properties., Comment: Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory (ACCT 2012), Pomorie : Bulgaria (2012)
- Published
- 2012
272. Unambiguous Decoding of Generalized Reed–Solomon Codes Beyond Half the Minimum Distance
- Author
-
Zeh , Alexander, Wachter-Zeh , Antonia, Bossert , Martin, Institute of Communications Engineering [Ulm] ( INT - University of Ulm. ), Universität Ulm, Geometry, arithmetic, algorithms, codes and encryption ( GRACE ), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National de Recherche en Informatique et en Automatique ( Inria ), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Communications Engineering [Ulm] (INT - University of Ulm.), Universität Ulm - Ulm University [Ulm, Allemagne], Geometry, arithmetic, algorithms, codes and encryption (GRACE), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Inria Saclay - Ile de France, AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Electric engineering ,ddc:621.3 ,SIGNAL TRANSMISSION + DATA COMMUNICATION (TELECOMMUNICATIONS) ,CODIERUNG (INFORMATIONSTHEORIE) ,DECODIERUNG (INFORMATIONSTHEORIE) ,REED-SOLOMON CODES (INFORMATIONSTHEORIE) ,SIGNALÜBERTRAGUNG + DATENKOMMUNIKATION (NACHRICHTENTECHNIK) ,CODING (INFORMATION THEORY) ,DECODING (INFORMATION THEORY) ,REED-SOLOMON CODES (INFORMATION THEORY) ,0102 computer and information sciences ,02 engineering and technology ,Data_CODINGANDINFORMATIONTHEORY ,01 natural sciences ,[ INFO.INFO-IT ] Computer Science [cs]/Information Theory [cs.IT] ,0202 electrical engineering, electronic engineering, information engineering ,FOS: Mathematics ,ddc:510 ,Hardware_ARITHMETICANDLOGICSTRUCTURES ,Multi-sequence shift-register synthesis ,generalized Reed-Solomon codes ,020206 networking & telecommunications ,failure probability ,010201 computation theory & mathematics ,[INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT] ,Mathematics - Abstract
International audience; The Schmidt–Sidorenko–Bossert scheme extends a low-rate Reed–Solomon code to an Interleaved Reed–Solomon code and achieves the decoding radius of Sudan’s original list decoding algorithm while the decoding result remains unambiguous. We adapt this result to the case of Generalized Reed–Solomon codes and calculate the parameters of the corresponding Interleaved Generalized Reed–Solomon code. Furthermore, the failure probability is derived.
- Published
- 2012
- Full Text
- View/download PDF
273. Masking trapped charge in flash memories
- Author
-
Wachter-Zeh, Antonia, primary and Yaakobi, Eitan, additional
- Published
- 2015
- Full Text
- View/download PDF
274. Some Gabidulin codes cannot be list decoded efficiently at any radius
- Author
-
Raviv, Netanel, primary and Wachter-Zeh, Antonia, additional
- Published
- 2015
- Full Text
- View/download PDF
275. Convolutional Codes in Rank Metric With Application to Random Network Coding
- Author
-
Wachter-Zeh, Antonia, primary, Stinner, Markus, additional, and Sidorenko, Vladimir, additional
- Published
- 2015
- Full Text
- View/download PDF
276. Efficient interpolation-based decoding of interleaved subspace and Gabidulin codes
- Author
-
Bartz, Hannes, primary and Wachter-Zeh, Antonia, additional
- Published
- 2014
- Full Text
- View/download PDF
277. List decoding of crisscross error patterns
- Author
-
Wachter-Zeh, Antonia, primary
- Published
- 2014
- Full Text
- View/download PDF
278. List and unique error-erasure decoding of interleaved Gabidulin codes with interpolation techniques
- Author
-
Wachter-Zeh, Antonia, primary and Zeh, Alexander, additional
- Published
- 2014
- Full Text
- View/download PDF
279. Bounds on List Decoding of Rank-Metric Codes
- Author
-
Wachter-Zeh, Antonia, primary
- Published
- 2013
- Full Text
- View/download PDF
280. Generalizing bounds on the minimum distance of cyclic codes using cyclic product codes
- Author
-
Zeh, Alexander, primary, Wachter-Zeh, Antonia, additional, Gadouleau, Maximilien, additional, and Bezzateev, Sergey, additional
- Published
- 2013
- Full Text
- View/download PDF
281. Bounds on polynomial-time list decoding of rank metric codes
- Author
-
Wachter-Zeh, Antonia, primary
- Published
- 2013
- Full Text
- View/download PDF
282. On fast decoding of interleaved Gabidulin codes
- Author
-
Sidorenko, Vladimir, primary, Wachter-Zeh, Antonia, additional, and Chen, Di, additional
- Published
- 2012
- Full Text
- View/download PDF
283. Decoding interleaved Reed–Solomon codes beyond their joint error-correcting capability
- Author
-
Wachter-Zeh, Antonia, primary, Zeh, Alexander, additional, and Bossert, Martin, additional
- Published
- 2012
- Full Text
- View/download PDF
284. Efficient decoding of Partial Unit Memory codes of arbitrary rate
- Author
-
Wachter-Zeh, Antonia, primary, Stinner, Markus, additional, and Bossert, Martin, additional
- Published
- 2012
- Full Text
- View/download PDF
285. Decoding Cyclic Codes up to a New Bound on the Minimum Distance
- Author
-
Zeh, Alexander, primary, Wachter-Zeh, Antonia, additional, and Bezzateev, Sergey V., additional
- Published
- 2012
- Full Text
- View/download PDF
286. Rank metric convolutional codes for Random Linear Network Coding
- Author
-
Wachter-Zeh, Antonia, primary and Sidorenko, Vladimir, additional
- Published
- 2012
- Full Text
- View/download PDF
287. Fast decoding of Gabidulin codes
- Author
-
Wachter-Zeh, Antonia, primary, Afanassiev, Valentin, additional, and Sidorenko, Vladimir, additional
- Published
- 2012
- Full Text
- View/download PDF
288. List Decoding of Crisscross Errors
- Author
-
Wachter-Zeh, Antonia
- Subjects
Discrete mathematics ,Polynomial ,Rank (linear algebra) ,List decoding ,020206 networking & telecommunications ,0102 computer and information sciences ,02 engineering and technology ,Library and Information Sciences ,01 natural sciences ,Upper and lower bounds ,Computer Science Applications ,Set (abstract data type) ,010201 computation theory & mathematics ,Metric (mathematics) ,0202 electrical engineering, electronic engineering, information engineering ,Cover (algebra) ,Decoding methods ,Information Systems ,Mathematics - Abstract
In this paper, list decoding of crisscross errors in arrays over finite fields is considered. For this purpose, the so-called cover metric is used, where the cover of a matrix is a set of rows and columns which contains all non-zero elements of the matrix. A Johnson-like upper bound on the maximum list size in the cover metric is derived, showing that the list of codewords has polynomial size up to a certain radius. Furthermore, a simple list decoding algorithm for a known optimal code construction is presented, which decodes errors in the cover metric up to our upper bound. These results reveal significant differences between the cover metric and the rank metric and show that the cover metric is more suitable for correcting crisscross errors.
- Full Text
- View/download PDF
289. Decoding of block and convolutional codes in rank metric
- Author
-
Wachter-Zeh, Antonia
- Subjects
Convolutions (Mathematics) ,Codierungstheorie ,Nachrichtentechnik ,DDC 620 / Engineering & allied operations ,Coding theory ,Rank-metric codes ,16. Peace & justice ,Computer Science::Information Theory - Abstract
Rank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed-Solomon-like code class is based on the evaluation of linearized polynomials and is nowadays called Gabidulin codes. This dissertation considers block and convolutional codes in rank metric with the objective of designing and investigating efficient decoding algorithms for both code classes. After giving a brief introduction to codes in rank metric and their properties, we first derive sub-quadratic-time algorithms for operations with linearized polynomials and state a new bounded minimum distance decoding algorithm for Gabidulin codes. Second, we present a new interpolation-based algorithm for unique and (not necessarily polynomial-time) list decoding of interleaved Gabidulin codes. The unique decoding algorithm recovers most error patterns of rank greater than half the minimum rank distance by efficiently solving two linear systems of equations. As a third topic, we investigate the possibilities of polynomial-time list decoding of rank-metric codes in general and Gabidulin codes in particular. For this purpose, we derive three bounds on the list size. These bounds show that the behavior of the list size for both, Gabidulin and rank-metric block codes in general, is significantly different from the behavior of Reed-Solomon codes and block codes in Hamming metric, respectively. Finally, we introduce a special class of convolutional codes in rank metric and propose an efficient decoding algorithm for these codes. These convolutional codes are (partial) unit memory codes, built upon rank-metric block codes.
290. Bounds on List Decoding Gabidulin Codes
- Author
-
Géométrie algébrique réelle ; Institut de Recherche Mathématique de Rennes (IRMAR) ; CNRS - École normale supérieure (ENS) - Cachan - Institut National des Sciences Appliquées [INSA] - Université de Rennes 1 - Université de Rennes II - Haute Bretagne - CNRS - École normale supérieure (ENS) - Cachan - Institut National des Sciences Appliquées [INSA] - Université de Rennes 1 - Université de Rennes II - Haute Bretagne - Institute of Communications Engineering [Ulm] (INT - University of Ulm.) ; University of Ulm - University of Ulm, Wachter-Zeh, Antonia, Géométrie algébrique réelle ; Institut de Recherche Mathématique de Rennes (IRMAR) ; CNRS - École normale supérieure (ENS) - Cachan - Institut National des Sciences Appliquées [INSA] - Université de Rennes 1 - Université de Rennes II - Haute Bretagne - CNRS - École normale supérieure (ENS) - Cachan - Institut National des Sciences Appliquées [INSA] - Université de Rennes 1 - Université de Rennes II - Haute Bretagne - Institute of Communications Engineering [Ulm] (INT - University of Ulm.) ; University of Ulm - University of Ulm, and Wachter-Zeh, Antonia
- Abstract
International audience, An open question about Gabidulin codes is whether polynomial-time list decoding beyond half the minimum distance is possible or not. In this contribution, we give a lower and an upper bound on the list size, i.e., the number of codewords in a ball around the received word. The lower bound shows that if the radius of this ball is greater than the Johnson radius, this list size can be exponential and hence, no polynomial-time list decoding is possible. The upper bound on the list size uses subspace properties.
291. A Correction to a Code-Based Blind Signature Scheme
- Author
-
Blazy, Olivier, Gaborit, Philippe, Mac, Dang Truong, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Wachter-Zeh, Antonia, editor, Bartz, Hannes, editor, and Liva, Gianluigi, editor
- Published
- 2022
- Full Text
- View/download PDF
292. Performance Bounds for QC-MDPC Codes Decoders
- Author
-
Baldi, Marco, Barenghi, Alessandro, Chiaraluce, Franco, Pelosi, Gerardo, Santini, Paolo, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Wachter-Zeh, Antonia, editor, Bartz, Hannes, editor, and Liva, Gianluigi, editor
- Published
- 2022
- Full Text
- View/download PDF
293. Security Analysis of a Cryptosystem Based on Subspace Subcodes
- Author
-
Berger, Thierry P., Gueye, Anta Niane, Gueye, Cheikh Thiecoumba, Hasan, M. Anwarul, Klamti, Jean Belo, Persichetti, Edoardo, Randrianarisoa, Tovohery H., Ruatta, Olivier, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Wachter-Zeh, Antonia, editor, Bartz, Hannes, editor, and Liva, Gianluigi, editor
- Published
- 2022
- Full Text
- View/download PDF
294. The Rank-Based Cryptography Library
- Author
-
Aragon, Nicolas, Bettaieb, Slim, Bidoux, Loïc, Connan, Yann, Coulaud, Jérémie, Gaborit, Philippe, Kominiarz, Anaïs, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Wachter-Zeh, Antonia, editor, Bartz, Hannes, editor, and Liva, Gianluigi, editor
- Published
- 2022
- Full Text
- View/download PDF
295. A Rank Metric Code-Based Group Signature Scheme
- Author
-
Blazy, Olivier, Gaborit, Philippe, Mac, Dang Truong, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Wachter-Zeh, Antonia, editor, Bartz, Hannes, editor, and Liva, Gianluigi, editor
- Published
- 2022
- Full Text
- View/download PDF
296. Kanalcodierung für Zuverlässige und Effiziente Informationsspeicherung in Modernen Datenträgern
- Author
-
Lenz, Andreas Philipp, Wachter-Zeh, Antonia (Prof. Dr.), and Milenkovic, Olgica (Prof., Ph.D.)
- Subjects
Ingenieurwissenschaften ,ddc:620 - Abstract
This dissertation treats information- and coding-theoretic aspects of modern data storage systems. We propose and analyze models that abstract different aspects of such memories with a particular focus on reliability and efficiency. The first two parts discuss the communication over channels with many parallel and unordered data sequences that are additionally perturbed by errors. In the third part, we analyze cost constrained systems for efficient DNA synthesis. Diese Dissertation befasst sich mit informations- und kodierungstheoretischen Aspekten moderner digitaler Datenträger. Wir entwerfen und analysieren Modelle, welche verschiedene Aspekte dieser Speicher beleuchten, mit einem besonderen Augenmerk auf Zuverlässigkeit und Effizienz. In den ersten zwei Teilen beschäftigen wir uns mit der Kommunikation über Kanäle mit vielen parallelen und ungeordneten Datensträngen, welche durch Fehler korrumpiert werden können. In dem dritten Teil analysieren wir kostbeschränkte Systeme für effiziente DNA Synthese.
- Published
- 2022
297. Postquanten-Kryptographie in der Hammingmetrik, der Rangmetrik und der Summenrangmetrik
- Author
-
Renner, Julian Wilhelm, Wachter-Zeh, Antonia (Prof. Dr.), and Horlemann, Anna-Lena (Prof. Dr.)
- Subjects
Ingenieurwissenschaften ,Code-Based Cryptography, Hamming Metric, Post-Quantum Cryptography, Rank Metric, Sum-Rank Metric ,Codebasierte Kryptographie, Hammingmetrik, Postquanten-Kryptographie, Rangmetrik, Summenrangmetrik ,ddc:620 - Abstract
This thesis studies code-based cryptography. First, three problems related to code-based cryptography are investigated and algorithms to solve them are presented. Then, attacks on the Twisted Reed-Solomon based McEliece scheme and on an implementation of the Hamming Quasi-Cyclic are developed. Last, the new scheme, LIGA, is proposed. It is based on the hardness of list decoding and interleaved decoding of Gabidulin codes; it features short ciphertext and key sizes, and no decryption failures. Diese Arbeit behandelt codebasierte Kryptographie. Zuerst werden drei diesbezügliche Probleme untersucht und Algorithmen zum Lösen dieser Probleme vorgestellt. Danach werden Angriffe auf das Twisted Reed-Solomon basierte McEliece System und auf eine Implementierung von Hamming Quasi-Cyclic entwickelt. Zuletzt wird das neue System LIGA vorgestellt. Es basiert auf Listen- und Verschränkungsdecodierung von Gabidulin Codes und zeichnet sich durch kurze Geheimtexte und Schlüsselgrößen aus.
- Published
- 2022
298. Datenintegrität und Datenschutz in verteilten Speichersystemen
- Author
-
Holzbaur, Lukas, Wachter-Zeh, Antonia (Prof. Dr.), and El Rouayheb, Salim (Prof., Ph.D.)
- Subjects
Ingenieurwissenschaften ,ddc:620 - Abstract
This work investigates different concepts related distributed storage, starting from codes with locality properties, such as maximally recoverable codes for grid-like topologies, regenerating partial MDS codes, and lifted affine-invariant codes. Then, the application of interleaving, a powerful method for increasing the error decoding radius, to the class of alternant codes is analyzed. Finally, new bounds on the rate of private information retrieval in the coded storage setting are derived. Diese Arbeit untersucht verschiedene Aspekte verteilter Datenspeicherung, angefangen mit lokal korrigierbaren Codes mit Gitterstruktur, Regeneration oder affiner Invarianz. Danach folgt eine Analyse der Anwendung von Codeverschränkung, einer mächtigen Methode zur Vergrößerung des Dekodierradius, auf die durch Teilkörper definierten Unterräume von Reed-Solomon Codes. Letztendlich werden neue Schranken an die Rate von privater Datenabfrage aus kodierten Speichersystemen hergeleitet.
- Published
- 2022
299. Robuste Secret-Key Generierung mit Quellunsicherheit und Kommunikationsratenbegrenzung
- Author
-
Tavangaran, Nima, Boche, Holger (Prof. Dr. Dr.), Poor, H. Vincent (Prof., Ph.D.), Wachter-Zeh, Antonia (Prof. Dr.), and Schaefer, Rafael F. (Prof. Dr.)
- Subjects
Ingenieurwissenschaften ,ddc:620 - Abstract
In this work, secret-key generation based on a three-party compound source is studied where the communication rate between legitimate users is limited. A robust secret-key generation protocol is introduced which guarantees security and reliability for all elements of the compound set. In this case, the secret-key capacity is derived as a function of the communication rate upper-bound while the size of the uncertainty set is arbitrary (possibly infinite) and the set of marginals is finite. In dieser Arbeit wird die Secret-Key Erzeugung mittels einer dreifachen Compoundquelle untersucht, wobei die Kommunikationsrate zwischen den legitimen Benutzern begrenzt ist. Es wird ein Protokoll zur robusten Secret-Key Erzeugung eingeführt, das Sicherheit und Zuverlässigkeit für alle Elemente der Compoundmenge garantiert. In diesem Fall wird die Secret-Key Kapazität als Funktion der oberen Schranke der Kommunikationsrate hergeleitet, wobei die Größe der Unsicherheitsmenge beliebig (möglicherweise unendlich) und die Menge der Randverteilungen endlich ist.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.