401. Recent advances in the in vivo and in vitro metabolism of retinoic acid.
- Author
-
Roberts AB and Frolik CA
- Subjects
- Animals, Cells, Cultured, Cricetinae, Hydroxy Acids, Intestinal Mucosa cytology, Keto Acids, Microsomes, Liver metabolism, Trachea cytology, Vitamin A metabolism, Tretinoin metabolism
- Abstract
Retinoic acid, a natural metabolite of retinol, has previously been shown to be capable of supporting growth and maintaining proper differentiation in epithelial tissues. Recently, investigation into the in vivo and in vitro metabolism of retinoic acid in hamsters, using both tracheal organ culture and subcellular preparations derived from intestinal mucosa, liver, and testis, has revealed the production of several metabolites more polar than the parent compound. Two of the early products of this metabolic pathway have been identified as 4-hydroxy- and 4-keto-retinoic acid. The formation of these metabolites is maximal in vitamin A-deficient hamsters that have been pretreated with retinoic acid and in vitamin A-normal animals. This fact, together with the decreased biological activity of the two compounds relative to retinoic acid in a tracheal organ culture assay, suggested that oxidative attack at carbon-four of the cyclohexenyl ring may be the first step in the elimination of retinoic acid from tissues. In addition, observations both in vivo and in vitro indicate that all-trans- and 13-cis-retinoic acid at low concentrations may be sharing a common metabolic pathway that includes an isomer of 4-keto-retinoic acid.
- Published
- 1979