201. Feasibility of Simultaneous Quantification of Myocardial and Renal Perfusion With Cardiac Positron Emission Tomography.
- Author
-
Brown JM, Park MA, Kijewski MF, Weber BN, Yang Y, Martell L, Perillo A, Barrett L, Parks S, Hainer J, Dorbala S, Blankstein R, and Di Carli MF
- Subjects
- Humans, Feasibility Studies, Reproducibility of Results, Positron-Emission Tomography, Kidney diagnostic imaging, Perfusion, Fibrosis, Positron Emission Tomography Computed Tomography, Ammonia
- Abstract
Background: Given the central importance of cardiorenal interactions, mechanistic tools for evaluating cardiorenal physiology are needed. In the heart and kidneys, shared pathways of neurohormonal activation, hypertension, and vascular and interstitial fibrosis implicate the relevance of systemic vascular health. The availability of a long axial field of view positron emission tomography (PET)/computed tomography (CT) system enables simultaneous evaluation of cardiac and renal blood flow., Methods: This study evaluated the feasibility of quantification of renal blood flow using data acquired during routine, clinically indicated
13 N-ammonia myocardial perfusion PET/CT. Dynamic PET image data were used to calculate renal blood flow. Reproducibility was assessed by the intraclass correlation coefficient among 3 independent readers. PET-derived renal blood flow was correlated with imaging and clinical parameters in the overall cohort and with histopathology in a small companion study of patients with a native kidney biopsy., Results: Among 386 consecutive patients with myocardial perfusion PET/CT, 296 (76.7%) had evaluable images to quantify renal perfusion. PET quantification of renal blood flow was highly reproducible (intraclass correlation coefficient 0.98 [95% CI, 0.93-0.99]) and was correlated with the estimated glomerular filtration rate ( r =0.64; P <0.001). Compared across vascular beds, resting renal blood flow was correlated with maximal stress myocardial blood flow and myocardial flow reserve (stress/rest myocardial blood flow), an integrated marker of endothelial health. In patients with kidney biopsy (n=12), resting PET renal blood flow was strongly negatively correlated with histological interstitial fibrosis ( r =-0.85; P <0.001)., Conclusions: Renal blood flow can be reliably measured from cardiac13 N-ammonia PET/CT and allows for simultaneous assessment of myocardial and renal perfusion, opening a potential novel avenue to interrogate the mechanisms of emerging therapies with overlapping cardiac and renal benefits., Competing Interests: Disclosures Dr Brown reports consulting fees from Bayer. Dr Weber reports consulting fees from Horizon Therapeutics and Kiniksa Pharmaceuticals. Dr Dorbala reports unrelated grant support from Attralus, Pfizer, GE healthcare, and Phillips. Dr Blankstein reports research support from Amgen and Novartis and has consulted for Caristo Inc and Elucid Inc. Dr Di Carli reports grant support from Gilead Sciences, in-kind research support from Amgen, and consulting fees from MedTrace. The other authors report no conflicts.- Published
- 2023
- Full Text
- View/download PDF