1,204 results on '"Friedlingstein, Pierre"'
Search Results
402. The dry season intensity as a key driver of NPP trends
- Author
-
Murray‐Tortarolo, Guillermo, primary, Friedlingstein, Pierre, additional, Sitch, Stephen, additional, Seneviratne, Sonia I., additional, Fletcher, Imogen, additional, Mueller, Brigitte, additional, Greve, Peter, additional, Anav, Alessandro, additional, Liu, Yi, additional, Ahlström, Anders, additional, Huntingford, Chris, additional, Levis, Sam, additional, Levy, Peter, additional, Lomas, Mark, additional, Poulter, Benjamin, additional, Viovy, Nicholas, additional, Zaehle, Sonke, additional, and Zeng, Ning, additional
- Published
- 2016
- Full Text
- View/download PDF
403. The C4MIP experimental protocol for CMIP6
- Author
-
Jones, Chris D., primary, Arora, Vivek, additional, Friedlingstein, Pierre, additional, Bopp, Laurent, additional, Brovkin, Victor, additional, Dunne, John, additional, Graven, Heather, additional, Hoffman, Forrest, additional, Ilyina, Tatiana, additional, John, Jasmin G., additional, Jung, Martin, additional, Kawamiya, Michio, additional, Koven, Charlie, additional, Pongratz, Julia, additional, Raddatz, Thomas, additional, Randerson, Jim, additional, and Zaehle, Sönke, additional
- Published
- 2016
- Full Text
- View/download PDF
404. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere
- Author
-
Tian, Hanqin, primary, Lu, Chaoqun, additional, Ciais, Philippe, additional, Michalak, Anna M., additional, Canadell, Josep G., additional, Saikawa, Eri, additional, Huntzinger, Deborah N., additional, Gurney, Kevin R., additional, Sitch, Stephen, additional, Zhang, Bowen, additional, Yang, Jia, additional, Bousquet, Philippe, additional, Bruhwiler, Lori, additional, Chen, Guangsheng, additional, Dlugokencky, Edward, additional, Friedlingstein, Pierre, additional, Melillo, Jerry, additional, Pan, Shufen, additional, Poulter, Benjamin, additional, Prinn, Ronald, additional, Saunois, Marielle, additional, Schwalm, Christopher R., additional, and Wofsy, Steven C., additional
- Published
- 2016
- Full Text
- View/download PDF
405. Differences between carbon budget estimates unravelled
- Author
-
Rogelj, Joeri, primary, Schaeffer, Michiel, additional, Friedlingstein, Pierre, additional, Gillett, Nathan P., additional, van Vuuren, Detlef P., additional, Riahi, Keywan, additional, Allen, Myles, additional, and Knutti, Reto, additional
- Published
- 2016
- Full Text
- View/download PDF
406. Supplementary material to "Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information"
- Author
-
Harper, Anna, primary, Cox, Peter, additional, Friedlingstein, Pierre, additional, Wiltshire, Andy, additional, Jones, Chris, additional, Sitch, Stephen, additional, Mercado, Lina M., additional, Groenendijk, Margriet, additional, Robertson, Eddy, additional, Kattge, Jens, additional, Bönisch, Gerhard, additional, Atkin, Owen K., additional, Bahn, Michael, additional, Cornelissen, Johannes, additional, Niinemets, Ülo, additional, Onipchenko, Vladimir, additional, Peñuelas, Josep, additional, Poorter, Lourens, additional, Reich, Peter B., additional, Soudzilovskaia, Nadia, additional, and van Bodegom, Peter, additional
- Published
- 2016
- Full Text
- View/download PDF
407. Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information
- Author
-
Harper, Anna, primary, Cox, Peter, additional, Friedlingstein, Pierre, additional, Wiltshire, Andy, additional, Jones, Chris, additional, Sitch, Stephen, additional, Mercado, Lina M., additional, Groenendijk, Margriet, additional, Robertson, Eddy, additional, Kattge, Jens, additional, Bönisch, Gerhard, additional, Atkin, Owen K., additional, Bahn, Michael, additional, Cornelissen, Johannes, additional, Niinemets, Ülo, additional, Onipchenko, Vladimir, additional, Peñuelas, Josep, additional, Poorter, Lourens, additional, Reich, Peter B., additional, Soudzilovskaia, Nadia, additional, and van Bodegom, Peter, additional
- Published
- 2016
- Full Text
- View/download PDF
408. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling
- Author
-
Bastos, Ana, primary, Janssens, Ivan A., additional, Gouveia, Célia M., additional, Trigo, Ricardo M., additional, Ciais, Philippe, additional, Chevallier, Frédéric, additional, Peñuelas, Josep, additional, Rödenbeck, Christian, additional, Piao, Shilong, additional, Friedlingstein, Pierre, additional, and Running, Steven W., additional
- Published
- 2016
- Full Text
- View/download PDF
409. Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests
- Author
-
Anav, Alessandro, primary, De Marco, Alessandra, additional, Proietti, Chiara, additional, Alessandri, Andrea, additional, Dell'Aquila, Alessandro, additional, Cionni, Irene, additional, Friedlingstein, Pierre, additional, Khvorostyanov, Dmitry, additional, Menut, Laurent, additional, Paoletti, Elena, additional, Sicard, Pierre, additional, Sitch, Stephen, additional, and Vitale, Marcello, additional
- Published
- 2016
- Full Text
- View/download PDF
410. The cumulative carbon budget and its implications
- Author
-
Millar, Richard, primary, Allen, Myles, additional, Rogelj, Joeri, additional, and Friedlingstein, Pierre, additional
- Published
- 2016
- Full Text
- View/download PDF
411. Recent trends and drivers of regional sources and sinks of carbon dioxide
- Author
-
Sitch, Stephen, Friedlingstein, Pierre, Gruber, Nicolas, Jones, S. D., Murray-Tortarolo, G., Ahlstrom, Andreas P., Doney, Scott C., Graven, Heather, Heinze, Christoph, Huntingford, Chris, Levis, Samuel, Levy, Peter E., Lomas, Mark, Poulter, Benjamin, Viovy, Nicolas, Zaehle, Sonke, Zeng, Ning, Arneth, Almut, Bonan, Gordon B., Bopp, Laurent, Canadell, Josep G., Chevallier, Frédéric, Ciais, Philippe, Ellis, Richard, Gloor, Emanuel, Peylin, Philippe, Piao, S. L., Le Quere, Corinne, Smith, Benjamin, Zhu, Zaichun, Myneni, Ranga, Sitch, Stephen, Friedlingstein, Pierre, Gruber, Nicolas, Jones, S. D., Murray-Tortarolo, G., Ahlstrom, Andreas P., Doney, Scott C., Graven, Heather, Heinze, Christoph, Huntingford, Chris, Levis, Samuel, Levy, Peter E., Lomas, Mark, Poulter, Benjamin, Viovy, Nicolas, Zaehle, Sonke, Zeng, Ning, Arneth, Almut, Bonan, Gordon B., Bopp, Laurent, Canadell, Josep G., Chevallier, Frédéric, Ciais, Philippe, Ellis, Richard, Gloor, Emanuel, Peylin, Philippe, Piao, S. L., Le Quere, Corinne, Smith, Benjamin, Zhu, Zaichun, and Myneni, Ranga
- Abstract
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 653-679, doi:10.5194/bg-12-653-2015., The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where rece, S. Sitch acknowledges financial support by RCUK through NERC (grant no. NE/J010154/). N. Gruber and C. Heinze acknowledge financial support by the European Commission through the EU FP7 projects CARBOCHANGE (grant no. 264879) and GEOCARBON (grant no. 283080). N. Gruber was additionally supported through ETH Zurich. S. C. Doney acknowledges support from the US National Science Foundation (NSF AGS-1048827). P. Friedlingstein, A. Arneth, and S. Zaehle acknowledge support by the European Commission through the EU FP7 project EMBRACE (grant no. 282672). A. Arneth and S. Sitch acknowledge the support of the European Commission-funded project LUC4C (grant no. 603542). The research leading to these results received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013) under grant agreement no. 238366. A. Ahlström and B. Smith acknowledge funding through the Mistra Swedish Research Programme on Climate, Impacts and Adaptation (SWECIA). C. Heinze acknowledges support from NOTUR/NorStore projects NN2980K and NS2980K.
- Published
- 2015
412. More frequent moments in the climate change debate as emissions continue
- Author
-
Huntingford, Chris, Friedlingstein, Pierre, Huntingford, Chris, and Friedlingstein, Pierre
- Abstract
Recent years have witnessed unprecedented interest in how the burning of fossil fuels may impact on the global climate system. Such visibility of this issue is in part due to the increasing frequency of key international summits to debate emissions levels, including the 2015 21st Conference of Parties meeting in Paris. In this perspective we plot a timeline of significant climate meetings and reports, and against metrics of atmospheric greenhouse gas changes and global temperature. One powerful metric is cumulative CO2 emissions that can be related to past and future warming levels. That quantity is analysed in detail through a set of papers in this ERL focus issue. We suggest it is an open question as to whether our timeline implies a lack of progress in constraining climate change despite multiple recent keynote meetings—or alternatively—that the increasing level of debate is encouragement that solutions will be found to prevent any dangerous warming levels?
- Published
- 2015
413. Multicriteria evaluation of discharge simulation in dynamic global vegetation models
- Author
-
Yang, Hui, Piao, Shilong, Zeng, Zhenzhong, Ciais, Philippe, Yin, Yi, Friedlingstein, Pierre, Sitch, Stephen, Ahlström, Anders, Guimberteau, Matthieu, Huntingford, Chris, Levis, Sam, Levy, Peter E., Huang, Mengtian, Li, Yue, Li, Xiran, Lomas, Mark R., Peylin, Philippe, Poulter, Ben, Viovy, Nicolas, Zaehle, Soenke, Zeng, Ning, Zhao, Fang, Wang, Lei, Yang, Hui, Piao, Shilong, Zeng, Zhenzhong, Ciais, Philippe, Yin, Yi, Friedlingstein, Pierre, Sitch, Stephen, Ahlström, Anders, Guimberteau, Matthieu, Huntingford, Chris, Levis, Sam, Levy, Peter E., Huang, Mengtian, Li, Yue, Li, Xiran, Lomas, Mark R., Peylin, Philippe, Poulter, Ben, Viovy, Nicolas, Zaehle, Soenke, Zeng, Ning, Zhao, Fang, and Wang, Lei
- Abstract
In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modeled well in the low and middle latitudes but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore, the 30 year trend of discharge is also underestimated. For the interannual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e., models account for 50% of observed interannual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modeling capability, a regional-weighted average of multimodel ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.
- Published
- 2015
414. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink
- Author
-
Ahlström, Anders, Raupach, Michael R., Schurgers, Guy, Smith, Benjamin, Arneth, Almut, Jung, Martin, Reichstein, Markus, Canadell, Josep G., Friedlingstein, Pierre, Jain, Atul K., Kato, Etsushi, Poulter, Benjamin, Sitch, Stephen, Stocker, Benjamin D., Viovy, Nicolas, Wang, Ying Ping, Wiltshire, Andy, Zaehle, Soenke, Zeng, Ning, Ahlström, Anders, Raupach, Michael R., Schurgers, Guy, Smith, Benjamin, Arneth, Almut, Jung, Martin, Reichstein, Markus, Canadell, Josep G., Friedlingstein, Pierre, Jain, Atul K., Kato, Etsushi, Poulter, Benjamin, Sitch, Stephen, Stocker, Benjamin D., Viovy, Nicolas, Wang, Ying Ping, Wiltshire, Andy, Zaehle, Soenke, and Zeng, Ning
- Abstract
The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.
- Published
- 2015
415. Global Carbon Budget 2020.
- Author
-
Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W., Andrew, Robbie M., Hauck, Judith, Olsen, Are, Peters, Glen P., Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Le Quéré, Corinne, Canadell, Josep G., Ciais, Philippe, Jackson, Robert B., Alin, Simone, Aragão, Luiz E. O. C., Arneth, Almut, Arora, Vivek, Bates, Nicholas R., and Becker, Meike
- Subjects
- *
BUDGET , *CARBON - Published
- 2020
- Full Text
- View/download PDF
416. Biophysical and economic limits to negative CO2 emissions
- Author
-
Smith, Pete, primary, Davis, Steven J., additional, Creutzig, Felix, additional, Fuss, Sabine, additional, Minx, Jan, additional, Gabrielle, Benoit, additional, Kato, Etsushi, additional, Jackson, Robert B., additional, Cowie, Annette, additional, Kriegler, Elmar, additional, van Vuuren, Detlef P., additional, Rogelj, Joeri, additional, Ciais, Philippe, additional, Milne, Jennifer, additional, Canadell, Josep G., additional, McCollum, David, additional, Peters, Glen, additional, Andrew, Robbie, additional, Krey, Volker, additional, Shrestha, Gyami, additional, Friedlingstein, Pierre, additional, Gasser, Thomas, additional, Grübler, Arnulf, additional, Heidug, Wolfgang K., additional, Jonas, Matthias, additional, Jones, Chris D., additional, Kraxner, Florian, additional, Littleton, Emma, additional, Lowe, Jason, additional, Moreira, José Roberto, additional, Nakicenovic, Nebojsa, additional, Obersteiner, Michael, additional, Patwardhan, Anand, additional, Rogner, Mathis, additional, Rubin, Ed, additional, Sharifi, Ayyoob, additional, Torvanger, Asbjørn, additional, Yamagata, Yoshiki, additional, Edmonds, Jae, additional, and Yongsung, Cho, additional
- Published
- 2015
- Full Text
- View/download PDF
417. More frequent moments in the climate change debate as emissions continue
- Author
-
Huntingford, Chris, primary and Friedlingstein, Pierre, additional
- Published
- 2015
- Full Text
- View/download PDF
418. Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades
- Author
-
Sitch, Stephen, Friedlingstein, Pierre, Gruber, Nicolas, Jones, Steve D., Murray-Tortarolo, Guillermo, Ahlström, Anders, Doney, Scott C., Graven, Heather D., Heinze, Christoph, Huntingford, Chris, Levis, Samuel, Levy, Peter, Lomas, Mark, Poulter, Benjamin, Viovy, Nicolas, Zaehle, Sönke, Zeng, Ning, Arneth, Almuth, Bonan, Gordon, Bopp, Laurent, Canadell, Josep G., Chevallier, Frédéric, Ciais, Philippe, Ellis, Richard, Gloor, Manuel, Peylin, Philippe, Piao, Shilonog, Le Quéré, Corinne, Smith, Benjamin, Zhu, Zaichun, and Myneni, Ranga
- Abstract
The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends., Biogeosciences Discussions, 10, ISSN:1810-6277, ISSN:1810-6285
- Published
- 2013
- Full Text
- View/download PDF
419. Biogéochimie du système climatique au cours du dernier million d'années
- Author
-
Bopp, Laurent, Friedlingstein, Pierre, Chappellaz, Jérôme, Legrand, Michel, Delmas, Robert, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2013
420. Contrasting interannual atmospheric CO2 variabilities and their terrestrial mechanisms for two types of El Niños.
- Author
-
Wang, Jun, Zeng, Ning, Wang, Meirong, Jiang, Fei, Chen, Jingming, Friedlingstein, Pierre, Jain, Atul K., Jiang, Ziqiang, Ju, Weimin, Lienert, Sebastian, Nabel, Julia, Sitch, Stephen, Viovy, Nicolas, Wang, Hengmao, and Wiltshire, Andrew J.
- Subjects
TELECONNECTIONS (Climatology) ,CARBON cycle ,ATMOSPHERIC carbon dioxide ,CHEMICAL precursors ,PRECIPITATION (Chemistry) - Abstract
El Niño has two different flavors, eastern Pacific (EP) and central Pacific (CP) El Niños, with different global teleconnections. However, their different impacts on the interannual carbon cycle variability remain unclear. Here we compared the behaviors of interannual atmospheric CO
2 variability and analyzed their terrestrial mechanisms duringthese two types of El Niños, based on the Mauna Loa (MLO) CO2 growth rate (CGR) and the Dynamic Global Vegetation Model's (DGVM) historical simulations. The composite analysis showed that evolution of the MLO CGR anomaly during EP and CP El Niños had three clear differences: (1) negative or neutral precursors in the boreal spring during anEl Niño developing year (denoted as "yr0"), (2) strong or weak amplitudes, and (3) durations of the peak from December (yr0) to April during an El Niño decaying year (denoted as "yr1") compared to October (yr0) to January (yr1) for a CP El Niño, respectively. The global land-atmosphere carbon flux (FTA) simulated by multi-models was able to capture the essentials of these characteristics. We further found that the gross primary productivity (GPP) over the tropics and the extratropical Southern Hemisphere (TropCSH) generally dominated the global FTA variations during both El Niño types. Regional analysis showed that during EP El Niño events significant anomalous carbon uptake caused by increased precipitation and colder temperatures, corresponding to the negative precursor, occurred between 30°S and 20°N from January (yr0) to June (yr0). The strongest anomalous carbon releases, largely due to the reduced GPP induced by low precipitation and warm temperatures, occurred between the equator and 20°N from February (yr1) to August (yr1). In contrast, during CP El Niño events, clear carbon releases existed between 10°N and 20°S from September (yr0) to September (yr1), resulting from the widespread dry and warm climate conditions. Different spatial patterns of land temperatures and precipitation in different seasons associated with EP and CP El Niños accounted for the evolutionary characteristics of GPP, terrestrial ecosystem respiration (TER), and the resultant FTA. Understanding these different behaviors of interannual atmospheric CO2 variability, along with their terrestrial mechanisms during EP and CP El Niños, is important because the CP El Niño occurrence rate might increase under global warming. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
421. Climate feedbacks in the Earth system and prospects for their evaluation.
- Author
-
Heinze, Christoph, Eyring, Veronika, Friedlingstein, Pierre, Jones, Colin, Balkanski, Yves, Collins, Williams, Fichefet, Thierry, Gao, Shuang, Hall, Alex, Ivanova, Detelina, Knorr, Wolfgang, Knutti, Reto, Löw, Alexander, Ponater, Michael, Schultz, Martin G., Schulz, Michael, Siebesma, Pier, Teixeira, Joao, Tselioudis, George, and Vancoppenolle, Martin
- Subjects
EARTH system science ,BIOGEOCHEMISTRY - Abstract
Earth system models (ESMs) are key tools for providing climate projections under different scenarios of human-induced forcing. ESMs include a large number of additional processes and feedbacks such as biogeochemical cycles that traditional physical climate models do not consider. Yet, some processes such as cloud dynamics and ecosystem functional response still have fairly high uncertainties. In this article, we present an overview of climate feedbacks for Earth system components currently included in state-of-the-art ESMs and discuss the challenges to evaluate and quantify them. Uncertainties in feedback quantification arise from the interdependencies of biogeochemical matter fluxes and physical properties, the spatial and temporal heterogeneity of processes, and the lack of long-term continuous observational data to constrain them. We present an outlook for promising approaches that can help quantifying and constraining the large number of feedbacks in ESMs in the future. The target group for this article includes generalists with a background in natural sciences and an interest in climate change as well as experts working in interdisciplinary climate research (researchers, lecturers, and students). This study updates and significantly expands upon the last comprehensive overview of climate feedbacks in ESMs, which was produced 15 years ago (NRC, 2003). [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
422. Land use change and El Niño-Southern Oscillationdrive decadal carbon balance shifts in SoutheastAsia.
- Author
-
Masayuki Kondo, Kazuhito Ichii, Patra, Prabir K., Canadell, Joseph G., Poulter, Benjamin, Sitch, Stephen, Calle, Leonardo, Liu, Yi Y., van Dijk, Albert I. J. M., Tazu Saeki, Nobuko Saigusa, Friedlingstein, Pierre, Arneth, Almut, Harper, Anna, Jain, Atul K., Etsushi Kato, Koven, Charles, Fang Li, Pugh, Thomas A. M., and Zaehle, Sönke
- Abstract
An integrated understanding of the biogeochemical consequences of climate extremes and land use changes is needed to constrain land-surface feedbacks to atmospheric CO
2 from associated climate change. Past assessments of the global carbon balance have shown particularly high uncertainty in Southeast Asia. Here, we use a combination of model ensembles to show that intensified land use change made Southeast Asia a strong source of CO2 from the 1980s to 1990s, whereas the region was close to carbon neutral in the 2000s due to an enhanced CO2 fertilization effect and absence of moderate-to-strong El Niño events. Our findings suggest that despite ongoing deforestation, CO2 emissions were substantially decreased during the 2000s, largely owing to milder climate that restores photosynthetic capacity and suppresses peat and deforestation fire emissions. The occurrence of strong El Niño events after 2009 suggests that the region has returned to conditions of increased vulnerability of carbon stocks. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
423. Contrasting behaviors of the atmospheric CO2 interannual variability during two types of El Niños.
- Author
-
Jun Wang, Ning Zeng, Meirong Wang, Fei Jiang, Jingming Chen, Friedlingstein, Pierre, Jain, Atul K., Ziqiang Jiang, Weimin Ju, Lienert, Sebastian, Nabel, Julia, Sitch, Stephen, Viovy, Nicolas, Hengmao Wang, and Wiltshire, Andrew J.
- Abstract
El Niño has two different flavors: eastern Pacific (EP) and central Pacific (CP) El Niños, with different global teleconnections. However, their different impacts on carbon cycle interannual variability remain unclear. We here compared the behaviors of the atmospheric CO
2 interannual variability and analyzed their terrestrial mechanisms during these two types of El Niños, based on Mauna Loa (MLO) CO2 growth rate (CGR) and Dynamic Global Vegetation Models (DGVMs) historical simulations. Composite analysis shows that evolutions of MLO CGR anomaly have three clear differences in terms of (1) negative and neutral precursors in boreal spring of El Niño developing years (denoted as “yr0”), (2) strong and weak amplitudes, and (3) durations of peak from December (yr0) to April of El Niño decaying year (denoted as “yr1”) and from October (yr0) to January (yr1) during EP and CP El Niños, respectively. Models simulated global land–atmosphere carbon flux (FTA ) is able to capture the essentials of these characteristics. We further find that the gross primary productivity (GPP) over the tropics and extratropical southern hemisphere (Trop+SH) generally dominates the global FTA variations during both El Niño types. Regionally, significant anomalous carbon uptake caused by more precipitation and colder temperature, corresponding to the negative precursor, occurs between 30° S and 20° N from January (yr0) to June (yr0), while the strongest anomalous carbon releases, due largely to the reduced GPP induced by low precipitation and warm temperature, happen between equator and 20° N from February (yr1) to August (yr1) during EP El Niño events. In contrast, during CP El Niño events, clear carbon releases exist between 10° N and 20° S from September (yr0) to September (yr1), resulted from the widespread dry and warm climate conditions. Different spatial patterns of land temperature and precipitation in different seasons associated with EP and CP El Niños account for the characteristics in evolutions of GPP, terrestrial ecosystem respiration (TER), and resultant FTA . Understanding these different behaviors of the atmospheric CO2 interannual variability along with their terrestrial mechanisms during EP and CP El Niños is important because CP El Niño occurrence rate might increase under global warming. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
424. On the causes of trends in the seasonal amplitude of atmospheric CO2.
- Author
-
Piao, Shilong, Liu, Zhuo, Wang, Yilong, Ciais, Philippe, Yao, Yitong, Peng, Shushi, Chevallier, Frédéric, Friedlingstein, Pierre, Janssens, Ivan A., Peñuelas, Josep, Sitch, Stephen, and Wang, Tao
- Subjects
ATMOSPHERIC carbon dioxide ,ATMOSPHERIC chemistry ,ATMOSPHERIC transport ,BIOMES ,TAIGAS - Abstract
Abstract: No consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO
2 in the northern latitudes. In this study, we used atmospheric CO2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO2 . We found significant (p < .05) increases in seasonal peak‐to‐trough CO2 amplitude (AMPP ‐T ) at nine stations, and in trough‐to‐peak amplitude (AMPT ‐P ) at eight stations over the last three decades. Most of the stations that recorded increasing amplitudes are in Arctic and boreal regions (>50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi‐model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO2 concentration (eCO2 ) and climate change are dominant drivers of the increase in AMPP ‐T and AMPT ‐P in the high latitudes. At the Barrow station, the observed increase of AMPP ‐T and AMPT ‐P over the last 33 years is explained by eCO2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO2 during carbon uptake period. Air‐sea CO2 fluxes (10% for AMPP ‐T and 11% for AMPT ‐P ) and the impacts of land‐use change (marginally significant 3% for AMPP ‐T and 4% for AMPT ‐P ) also contributed to the CO2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
425. Fossil CO2emissions in the post-COVID-19 era
- Author
-
Le Quéré, Corinne, Peters, Glen P., Friedlingstein, Pierre, Andrew, Robbie M., Canadell, Josep G., Davis, Steven J., Jackson, Robert B., and Jones, Matthew W.
- Abstract
Five years after the adoption of the Paris Climate Agreement, growth in global CO2emissions has begun to falter. The pervasive disruptions from the COVID-19 pandemic have radically altered the trajectory of global CO2emissions. Contradictory effects of the post-COVID-19 investments in fossil fuel-based infrastructure and the recent strengthening of climate targets must be addressed with new policy choices to sustain a decline in global emissions in the post-COVID-19 era.
- Published
- 2021
- Full Text
- View/download PDF
426. A steep road to climate stabilization
- Author
-
Friedlingstein, Pierre
- Subjects
Greenhouse gases -- Environmental aspects -- Control -- Usage ,Energy minerals -- Usage -- Environmental aspects ,Fossil fuels -- Usage -- Environmental aspects ,Carbon dioxide -- Environmental aspects -- Control -- Usage ,Climatic changes -- Causes of -- Control -- Environmental aspects -- Usage ,Environmental issues ,Science and technology ,Zoology and wildlife conservation ,Control ,Usage ,Environmental aspects ,Causes of - Abstract
Author(s): Pierre Friedlingstein [1] The present dependence on fossil fuels for energy means that as the demand for energy increases, so does the emission of greenhouse gases. The increasing concentration [...]
- Published
- 2008
- Full Text
- View/download PDF
427. Three-dimensional transport and concentration of SF6
- Author
-
Denning, A. Scott, Holzer, Mark, Gurney, Kevin R., Heimann, Martin, Law, Rachel M., Rayner, Peter J., Fung, Inez Y., Fan, Song-Miao, Taguchi, Shoichi, Friedlingstein, Pierre, Balkanski, Yves, Taylor, John, Maiss, Manfred, and Levin, Ingeborg
- Abstract
Sulfur hexafluoride (SF6) is an excellent tracer of large-scale atmospheric transport, because it has slowly increasing sources mostly confined to northern midlatitudes, and has a lifetime of thousands of years. We have simulated the emissions, transport, and concentration of SF6 for a 5-year period, and compared the results with atmospheric observations. In addition, we have performed an intercomparison of interhemispheric transport among 11 models to investigate the reasons for the differences among the simulations. Most of the models are reasonably successful at simulating the observed meridional gradient of SF6 in the remote marine boundary layer, though there is less agreement at continental sites. Models that compare well to observations in the remote marine boundary layer tend to systematically overestimate SF6 at continental locations in source regions, suggesting that vertical trapping rather than meridional transport may be a dominant control on the simulated meridional gradient. The vertical structure of simulated SF6 in the models supports this interpretation. Some of the models perform quite well in terms of the simulated seasonal cycle at remote locations, while others do not. Interhemispheric exchange time varies by a factor of 2 when estimated from 1-dimensional meridional profiles at the surface, as has been done for observations. The agreement among models is better when the global surface mean mole fraction is used, and better still when the full 3-dimensional mean mixing ratio is used. The ranking of the interhemispheric exchange time among the models is not sensitive to the change from station values to surface means, but is very sensitive to the change from surface means to the full 3-dimensional tracer fields. This strengthens the argument that vertical redistribution dominates over interhemispheric transport in determining the meridional gradient at the surface. Vertically integrated meridional transport in the models is divided roughly equally into transport by the mean motion, the standing eddies, and the transient eddies. The vertically integrated mass flux is a good index of the degree to which resolved advection vs. parameterized diffusion accomplishes the meridional transport of SF6. Observational programs could provide a much better constraint on simulated chemical tracer transport if they included regular sampling of vertical profiles of nonreactive trace gases over source regions and meridional profiles in the middle to upper troposphere. Further analysis of the SF6simulations will focus on the subgrid-scale parameterized transports.DOI: 10.1034/j.1600-0889.1999.00012.x
- Published
- 2011
428. Can a strong atmospheric CO2 rectifier effect be reconciled with a 'reasonable' carbon budget?
- Author
-
Denning, A. Scott, Takahashi, Taro, and Friedlingstein, Pierre
- Abstract
Atmospheric CO2 accumulates near the Earth's surface because of relatively deeper vertical mixing when photosynthesis is active than when it is not. Some models simulate an excess of more than 2.5 ppmv CO2 in the remote Northern Hemisphere due to this ‘‘rectification’′ of an annually balanced terrestrial carbon cycle. The covariance between CO2 flux and vertical mixing, and the resulting vertical structure of CO2 are generally consistent with field data at local scales, but it is difficult to reconcile such a strong rectifier signal with current ideas about the global carbon budget. A rectifier effect of 2.5 ppmv at northern flask sampling stations implies an unreasonably strong northern sink of atmospheric CO2, and a corresponding source in the tropics or Southern Hemisphere.DOI: 10.1034/j.1600-0889.1999.t01-1-00010.x
- Published
- 2011
429. The relationship between peak warming and cumulative CO2emissions, and its use to quantify vulnerabilities in the carbon–climate–human system
- Author
-
Raupach, Michael R., Canadell, Josep G., Ciais, Philippe, Friedlingstein, Pierre, Rayner, Peter J., and Trudinger, Catherine M.
- Subjects
Atmospheric Science - Abstract
Interactions between the carbon cycle, climate and human societies are subject to several major vulnerabilities, broadly defined as factors contributing to the risk of harm from human-induced climate change. We assess five vulnerabilities: (1) effects of increasing CO2 on the partition of anthropogenic carbon between atmospheric, land and ocean reservoirs; (2) effects of climate change (quantified by temperature) on CO2 fluxes; (3) uncertainty in climate sensitivity; (4) non-CO2 radiative forcing and (5) anthropogenic CO2 emissions. Our analysis uses a physically based expression for Tp(Qp), the peak warming Tp associated with a cumulative anthropogenic CO2 emission Qp to the time of peak warming. The approximations in this expression are evaluated using a non-linear box model of the carbon–climate system, forced with capped emissions trajectories described by an analytic form satisfying integral and smoothness constraints. The first four vulnerabilities appear as parameters that influence Tp(Qp), whereas the last appears through the independent variable. In terms of likely implications for Tp(Qp), the decreasing order of the first four vulnerabilities is: uncertainties in climate sensitivity, effects of non-CO2 radiative forcing, effects of climate change on CO2 fluxes and effects of increasing CO2 on the partition of anthropogenic carbon.DOI: 10.1111/j.1600-0889.2010.00521.x
- Published
- 2011
430. The relationship between peak warming and cumulative CO 2 emissions, and its use to quantify vulnerabilities in the carbon-climate-human system
- Author
-
Raupach, Michael, Canadell, Josep, Ciais, Philippe, Friedlingstein, Pierre, Rayner, Peter, Trudinger, Catherine, CSIRO Marine and Atmospheric Research (CSIRO-MAR), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; Interactions between the carbon cycle, climate and human societies are subject to several major vulnerabilities, broadly defined as factors contributing to the risk of harm from human-induced climate change. We assess five vulnerabilities: (1) effects of increasing CO 2 on the partition of anthropogenic carbon between atmospheric, land and ocean reservoirs ; (2) effects of climate change (quantified by temperature) on CO 2 fluxes; (3) uncertainty in climate sensitivity; (4) non-CO 2 radiative forcing and (5) anthropogenic CO 2 emissions. Our analysis uses a physically based expression for T p (Q p), the peak warming T p associated with a cumulative anthropogenic CO 2 emission Q p to the time of peak warming. The approximations in this expression are evaluated using a non-linear box model of the carbon-climate system, forced with capped emissions trajectories described by an analytic form satisfying integral and smoothness constraints. The first four vulnerabilities appear as parameters that influence T p (Q p), whereas the last appears through the independent variable. In terms of likely implications for T p (Q p), the decreasing order of the first four vulnerabilities is: uncertainties in climate sensitivity, effects of non-CO 2 radiative forcing, effects of climate change on CO 2 fluxes and effects of increasing CO 2 on the partition of anthropogenic carbon.
- Published
- 2011
431. Tropical forests and climate policy: new science underscores the value of a climate policy initiative to reduce emissions from tropical deforestation
- Author
-
Gullison, Raymond E., Frumhoff, Peter C., Canadell, Josep G., Field, Christopher B., Nepstad, Daniel C., Hayhoe, Katharine, Avissar, Roni, Curran, Lisa M., Friedlingstein, Pierre, Jones, Chris D., and Nobre, Carlos
- Subjects
Deforestation -- United States ,Deforestation -- By-products ,Deforestation -- Laws, regulations and rules ,Atmospheric carbon dioxide -- Control ,Air quality management -- Evaluation ,Environmental policy -- Planning ,Environmental policy -- Evaluation ,Government regulation ,Company business planning - Published
- 2007
432. Carbon cycle feedbacks and future climate change
- Author
-
Friedlingstein, Pierre, primary
- Published
- 2015
- Full Text
- View/download PDF
433. Measuring a fair and ambitious climate agreement using cumulative emissions
- Author
-
Peters, Glen P, primary, Andrew, Robbie M, additional, Solomon, Susan, additional, and Friedlingstein, Pierre, additional
- Published
- 2015
- Full Text
- View/download PDF
434. Spatiotemporal patterns of terrestrial gross primary production: A review
- Author
-
Anav, Alessandro, primary, Friedlingstein, Pierre, additional, Beer, Christian, additional, Ciais, Philippe, additional, Harper, Anna, additional, Jones, Chris, additional, Murray-Tortarolo, Guillermo, additional, Papale, Dario, additional, Parazoo, Nicholas C., additional, Peylin, Philippe, additional, Piao, Shilong, additional, Sitch, Stephen, additional, Viovy, Nicolas, additional, Wiltshire, Andy, additional, and Zhao, Maosheng, additional
- Published
- 2015
- Full Text
- View/download PDF
435. Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models
- Author
-
Yang, Hui, primary, Piao, Shilong, additional, Zeng, Zhenzhong, additional, Ciais, Philippe, additional, Yin, Yi, additional, Friedlingstein, Pierre, additional, Sitch, Stephen, additional, Ahlström, Anders, additional, Guimberteau, Matthieu, additional, Huntingford, Chris, additional, Levis, Sam, additional, Levy, Peter E., additional, Huang, Mengtian, additional, Li, Yue, additional, Li, Xiran, additional, Lomas, Mark R, additional, Peylin, Philippe, additional, Poulter, Ben, additional, Viovy, Nicolas, additional, Zaehle, Soenke, additional, Zeng, Ning, additional, Zhao, Fang, additional, and Wang, Lei, additional
- Published
- 2015
- Full Text
- View/download PDF
436. The dominant role of semi-arid ecosystems in the trend and variability of the land CO 2 sink
- Author
-
Ahlström, Anders, primary, Raupach, Michael R., additional, Schurgers, Guy, additional, Smith, Benjamin, additional, Arneth, Almut, additional, Jung, Martin, additional, Reichstein, Markus, additional, Canadell, Josep G., additional, Friedlingstein, Pierre, additional, Jain, Atul K., additional, Kato, Etsushi, additional, Poulter, Benjamin, additional, Sitch, Stephen, additional, Stocker, Benjamin D., additional, Viovy, Nicolas, additional, Wang, Ying Ping, additional, Wiltshire, Andy, additional, Zaehle, Sönke, additional, and Zeng, Ning, additional
- Published
- 2015
- Full Text
- View/download PDF
437. The Origin and Limits of the Near Proportionality between Climate Warming and Cumulative CO2 Emissions
- Author
-
MacDougall, Andrew H., primary and Friedlingstein, Pierre, additional
- Published
- 2015
- Full Text
- View/download PDF
438. Terrestrial nitrogen feedbacks may accelerate future climate change
- Author
-
Zaehle, Sönke, Friedlingstein, Pierre, Friend, Andrew, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
The effects of nitrogen (N) constraints on future terrestrial carbon (C) dynamics are investigated using the O-CN land surface model. The model's responses to elevated [CO2] and soil warming agree well with observations made in ecosystem manipulation studies. N dynamics reduce terrestrial C storage due to CO2 fertilization over the period 1860-2100 by similar to 50% (342 Pg C) mainly in mid-high latitude ecosystems, compared to a simulation not accounting for N dynamics. Conversely, N dynamics reduce projected losses of land C due to increasing temperature by 16% (49 Pg C); however, this effect is prevalent only in mid-high latitude ecosystems. Despite synergistic interactions, the balance of these opposing effects is a significant reduction in future net land C storage. Terrestrial N dynamics thereby consistently increase atmospheric [CO2] in the year 2100 with a median value of 48 (41-55) ppmv, corresponding to an additional radiative forcing of 0.29 (0.28-0.34) W m(-2). Citation: Zaehle, S., P. Friedlingstein, and A. D. Friend (2010), Terrestrial nitrogen feedbacks may accelerate future climate change, Geophys. Res. Lett., 37, L01401, doi:10.1029/2009GL041345.
- Published
- 2010
439. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity
- Author
-
Piao, Shilong, Nan, Huijuan, Huntingford, Chris, Ciais, Philippe, Friedlingstein, Pierre, Sitch, Stephen, Peng, Shushi, Ahlstrom, Anders, Canadell, Josep G., Cong, Nan, Levis, Sam, Levy, Peter, Liu, Lingli, Lomas, Mark, Mao, Jiafu, Myneni, Ranga B., Peylin, Philippe, Poulter, Ben, Shi, Xiaoying, Yin, Guodong, Viovy, Nicolas, Wang, Tao, Wang, Xuhui, Zaehle, Soenke, Zeng, Ning, Zeng, Zhenzhong, Chen, Anping, Piao, Shilong, Nan, Huijuan, Huntingford, Chris, Ciais, Philippe, Friedlingstein, Pierre, Sitch, Stephen, Peng, Shushi, Ahlstrom, Anders, Canadell, Josep G., Cong, Nan, Levis, Sam, Levy, Peter, Liu, Lingli, Lomas, Mark, Mao, Jiafu, Myneni, Ranga B., Peylin, Philippe, Poulter, Ben, Shi, Xiaoying, Yin, Guodong, Viovy, Nicolas, Wang, Tao, Wang, Xuhui, Zaehle, Soenke, Zeng, Ning, Zeng, Zhenzhong, and Chen, Anping
- Abstract
Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30oN, the strength of the relationship between the interannual variability of growing season NDVI and temperature (partial correlation coefficient RNDVI-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT is mainly observed in temperate and arctic ecosystems, and is also partly reproduced by process-based ecosystem model results. In the temperate ecosystem, the decrease in RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a nonlinear response of photosynthesis to temperature, increase of hot extreme days and shrub expansion over grass-dominated tundra. Our results caution the use of results from interannual time scales to constrain the decadal response of plants to ongoing warming.
- Published
- 2014
440. Summary for Policymakers
- Author
-
Alexander, Lisa V, Alexander, Lisa V, Allen, Simon K, Bindoff, Nathaniel L, Breon, Francois-Marie, Church, John A, Cubasch, Ulrich, Emori, Seita, Forster, Piers, Friedlingstein, Pierre, Gillett, Nathan, Gregory, Jonathan M, Hartmann, Dennis L, Jansen, Eystein, Kirtman, Ben, Knutti, Reto, Kanikicharla, Krishna Kumar, Lemke, Peter, Marotzke, Jochem, Masson-Delmotte, Valerie, Meehl, Gerald A, Mokhov, Igor I, Piao, Shilong, Plattner, Gian-Kasper, Qin, Dahe, Ramaswamy, Venkatachalam, Randall, David, Rhein, Monika, Rojas, Maisa, Sabine, Christopher, Shindell, Drew, Stocker, Thomas F, Talley, Lynne D, Vaughan, David G, Xie, Shang-Ping, Allen, Myles R, Boucher, Olivier, Chambers, Don, Christensen, Jens Hesselbjerg, Ciais, Philippe, Clark, Peter U, Collins, Matthew, Comiso, Josefino C, de Menezes, Viviane Vasconcellos, Feely, Richard A, Fichefet, Thierry, Fiore, Arlene M, Flato, Gregory, Fuglestvedt, Jan, Hegerl, Gabriele, Hezel, Paul J, Johnson, Gregory C, Kaser, Georg, Kattsov, Vladimir, Kennedy, John, Tank, Albert MG Klein, Le Quere, Corinne, Myhre, Gunnar, Osborn, Timothy, Payne, Antony J, Perlwitz, Judith, Power, Scott, Prather, Michael, Rintoul, Stephen R, Rogelj, Joeri, Rusticucci, Matilde, Schulz, Michael, Sedlacek, Jan, Stott, Peter A, Sutton, Rowan, Thorne, Peter W, Wuebbles, Donald, Alexander, Lisa V, Alexander, Lisa V, Allen, Simon K, Bindoff, Nathaniel L, Breon, Francois-Marie, Church, John A, Cubasch, Ulrich, Emori, Seita, Forster, Piers, Friedlingstein, Pierre, Gillett, Nathan, Gregory, Jonathan M, Hartmann, Dennis L, Jansen, Eystein, Kirtman, Ben, Knutti, Reto, Kanikicharla, Krishna Kumar, Lemke, Peter, Marotzke, Jochem, Masson-Delmotte, Valerie, Meehl, Gerald A, Mokhov, Igor I, Piao, Shilong, Plattner, Gian-Kasper, Qin, Dahe, Ramaswamy, Venkatachalam, Randall, David, Rhein, Monika, Rojas, Maisa, Sabine, Christopher, Shindell, Drew, Stocker, Thomas F, Talley, Lynne D, Vaughan, David G, Xie, Shang-Ping, Allen, Myles R, Boucher, Olivier, Chambers, Don, Christensen, Jens Hesselbjerg, Ciais, Philippe, Clark, Peter U, Collins, Matthew, Comiso, Josefino C, de Menezes, Viviane Vasconcellos, Feely, Richard A, Fichefet, Thierry, Fiore, Arlene M, Flato, Gregory, Fuglestvedt, Jan, Hegerl, Gabriele, Hezel, Paul J, Johnson, Gregory C, Kaser, Georg, Kattsov, Vladimir, Kennedy, John, Tank, Albert MG Klein, Le Quere, Corinne, Myhre, Gunnar, Osborn, Timothy, Payne, Antony J, Perlwitz, Judith, Power, Scott, Prather, Michael, Rintoul, Stephen R, Rogelj, Joeri, Rusticucci, Matilde, Schulz, Michael, Sedlacek, Jan, Stott, Peter A, Sutton, Rowan, Thorne, Peter W, and Wuebbles, Donald
- Published
- 2014
441. Spatiotemporal patterns of terrestrial carbon cycle during the 20th century
- Author
-
Piao, Shilong, Ciais, Philippe, Friedlingstein, Pierre, De Noblet-Ducoudré, Nathalie, Cadule, Patricia, Viovy, Nicolas, Wang, Tao, College of Urban and Environmental Sciences [Beijing], Peking University [Beijing], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ICOS-ATC (ICOS-ATC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; [1] We evaluated how climate change, rising atmospheric CO 2 concentration, and land use change influenced the terrestrial carbon (C) cycle for the last century using a process-based ecosystem model. Over the last century, the modeled land use change emitted about 129 Pg of C to the atmosphere. About 76% (or 98 Pg C) of this emission, however, was offset by net C uptake on land driven by climate changes and rising atmospheric CO 2 concentration. Thus, the modeled net release of C from the terrestrial ecosystems to the atmosphere from 1901 to 2002 is about 31 Pg C. Global net primary productivity (NPP) has significantly increased by 14% during the last century, especially since the 1970s. From 1980 to 2002, global NPP increased with an average increase rate of 0.4% yr À1. At global scale, such an increase seems to be primarily attributed to the increase in atmospheric CO 2 concentration, and then to precipitation change. Over the last 2 decades, climate change and rising CO 2 forced the land carbon sink (1.6 Pg C yr À1 for 1980s and 2.2 Pg C yr À1 for 1990s) to be larger than land use change driven carbon emissions (1.0 Pg C yr À1 for 1980s and 1.2 Pg C yr À1 for 1990s), resulting a net land sink of 0.5 Pg C yr À1 in the 1980s and of 1.0 Pg C yr À1 in the 1990s. The largest C emission from land use change appeared in tropical regions with an average emission of 0.6 Pg C yr À1 in 1980s and 0.7 Pg C yr À1 in 1990s, which is slightly larger than net carbon uptake due to CO 2 fertilization and climate change. Thus, net carbon balance of tropical lands is close to neutral over the past 2 decades (about 0.13 Pg C yr À1 in 1980s and 0.03 Pg C yr À1 in 1990s). We also found that current global warming has already started accelerating C loss from terrestrial ecosystems, by enhanced decomposition of soil organic carbon. In response to warming trends only, the global net carbon uptake significantly decreased, offsetting about 70% of the increase in global net carbon uptake owing to CO 2 fertilization during 1980-2002. The global terrestrial C cycle also shows large year-to-year variations, and different regions have quite distinct dominant drivers. Generally, interannual changes of carbon fluxes in tropical and temperate ecosystems are mainly explained by precipitation variability, while temperature variability plays a major role in boreal ecosystems.
- Published
- 2009
442. Le GIEC. Pourquoi? Comment ?
- Author
-
Friedlingstein, Pierre, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2009
443. Global Climate Projections
- Author
-
Meehl, Gerald A., Stocker, Thomas F., Collins, William D., Friedlingstein, Pierre, Gaye, Amadou T., Gregory, Jonathan M., Kitoh, Akio, Knutti, Reto, Murphy, James M., Noda, Akira, Raper, Sarah C.B., Watterson, Ian G., Weaver, Andrew J., and Zhao, Zong-Ci
- Subjects
530 Physics - Abstract
The future climate change results assessed in this chapter are based on a hierarchy of models, ranging from Atmosphere-Ocean General Circulation Models (AOGCMs) and Earth System Models of Intermediate Complexity (EMICs) to Simple Climate Models (SCMs). These models are forced with concentrations of greenhouse gases and other constituents derived from various emissions scenarios ranging from non- mitigation scenarios to idealised long-term scenarios. In general, we assess non-mitigated projections of future climate change at scales from global to hundreds of kilometres. Further assessments of regional and local climate changes are provided in Chapter 11. Due to an unprecedented, joint effort by many modelling groups worldwide, climate change projections are now based on multi-model means, differences between models can be assessed quantitatively and in some instances, estimates of the probability of change of important climate system parameters complement expert judgement. New results corroborate those given in the Third Assessment Report (TAR). Continued greenhouse gas emissions at or above current rates will cause further warming and induce many changes in the global climate system during the 21st century that would very likely be larger than those observed during the 20th century.
- Published
- 2007
- Full Text
- View/download PDF
444. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades
- Author
-
Piao, Shilong, Friedlingstein, Pierre, Ciais, Philippe, Viovy, Nicolas, Demarty, Jérôme, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology - Abstract
International audience; A number of studies have suggested that the growing season duration has significantly lengthened during the past decades, but the connections between phenology variability and the terrestrial carbon (C) cycle are far from clear. In this study, we used the “ORganizing Carbon and Hydrology In Dynamic Ecosystems” (ORCHIDEE) process based ecosystem model together with observed climate data to investigate spatiotemporal changes in phenology and their impacts on carbon fluxes in the Northern Hemisphere (>25°N) during 1980–2002. We found that the growing season length (GSL) has increased by 0.30 days yr−1 (R2 = 0.27, P = 0.010), owing to the combination of an earlier onset in spring (0.16 days yr−1) and a later termination in autumn (0.14 days yr−1). Trends in the GSL are however highly variable across the regions. In Eurasia, there is a significant trend toward earlier vegetation green‐up with an overall advancement rate of 0.28 days yr−1 (R2 = 0.32, P = 0.005), while in North America there is a significantly delayed vegetation senescence by 0.28 days yr−1 (R2 = 0.26, P = 0.013) during the study period. Our results also suggested that the GSL strongly correlates with annual gross primary productivity (GPP) and net primary productivity (NPP), indicating that longer growing seasons may eventually enhance vegetation growth. A 1‐day extension in GSL leads to an increase in annual GPP of 5.8 gC m−2 yr−1 (or 0.6% per day), and an increase in NPP of 2.8 gC m−2 yr−1 per day. However, owing to enhanced soil carbon decomposition accompanying the GPP increase, a change in GSL correlates only poorly with a change in annual net ecosystem productivity (NEP).
- Published
- 2007
445. Le défi du changement climatique
- Author
-
Friedlingstein, Pierre, Jouzel, Jean, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2007
446. Summary for Policymakers
- Author
-
Alley, Richard B., Berntsen, Terje, Bindoff, Nathaniel, Chidthaisong, Amnat, Friedlingstein, Pierre, Gregory, Jonathan, Hegerl, Gabriele, Heimann, Martin, Hewitson, Bruce, Hoskins, Brian, Joos, Fortunat, Jouzel, Jean, Kattsov, Vladimir, Lohmann, Ulrike, Manning, Martin, Matsuno, Taroh, Molina, Mario, Nicholls, Neville, Overpeck, Jonathan, Qin, Dahe, Raga, Graciela, Ramaswamy, Venkatachalam, Ren, Jiawen, Rusticucci, Matilde, Solomon, Susan, Somerville, Richard, Stocker, Thomas, Stott, Peter, Stouffer, Ronald, Whetton, Penny, Wood, Richard, Wratt, David, Arblaster, J., Brasseur, G., Christensen, J.H., Denman, K.L., Fahey, D.W., Forster, P., Jansen, E., Jones, P.D., Knutti, R., Le Treut, H, Lemke, P., Meehl, G., Mote, P., Randall, D.A., Stone, D.A., Trenberth, K.E., Willebrand, J., Zwiers, F., Chen, Zhenlin, Marquis, M, Averyt, K, Tignor, M, Miller, H, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2007
447. What determines the magnitude of carbon cycle-climate feedbacks?
- Author
-
Matthews, H. Damon, Eby, Michael, Ewen, Tracy, Friedlingstein, Pierre, Hawkins, Barbara, University of Zurich, Matthews, H Damon, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,2300 General Environmental Science ,10122 Institute of Geography ,2304 Environmental Chemistry ,1902 Atmospheric Science ,2306 Global and Planetary Change ,910 Geography & travel ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; Positive feedbacks between climate change and the carbon cycle have the potential to amplify the growth of atmospheric carbon dioxide and accelerate future climate warming. However, both the magnitude of and the processes which drive future carbon cycleclimate feedbacks remain highly uncertain. In this study, we use a coupled climate-carbon model to investigate how the response of vegetation photosynthesis to climate change contributes to the overall strength of carbon cycle-climate feedbacks. We find that the feedback strength is particularly sensitive to the model representation of the photosynthesis-temperature response, with lesser sensitivity to the parameterization of soil moisture and nitrogen availability. In all simulations, large feedbacks are associated with a climatic suppression of terrestrial primary productivity and consequent reduction of terrestrial carbon uptake. This process is particularly evident in the tropics and can explain a large part of the range of carbon cycle-climate feedbacks simulated by different coupled climate-carbon models.
- Published
- 2007
448. Simulation de l'évolution récente et future du climat par les modèles du CNRM et de l'IPSL
- Author
-
Dufresne, Jean-Louis, Salas y Mélia, David, Denvil, Sébastien, Tyteca, Sophie, Arzel, Olivier, Bony, Sandrine, Braconnot, Pascale, Brockmann, Patrick, Cadule, Patricia, Caubel, Arnaud, Chauvin, Fabrice, Déqué, Michel, Douville, Hervé, Fairhead, Laurent, Fichefet, Thierry, Foujols, Marie-Alice, Friedlingstein, Pierre, Guérémy, Jean-François, Hourdin, Frédéric, Idelkadi, Abderrahmane, Lévy, Claire, Madec, Gurvan, Marquet, Pascal, Marti, Olivier, Musat, Ionela, Planton, Serge, Royer, Jean-François, Swingedouw, Didier, Voldoire, Aurore, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astronomie et de Géophysique Georges Lemaître (UCL-ASTR), Université Catholique de Louvain = Catholic University of Louvain (UCL), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation du climat (CLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
National audience; In support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) that should appear in early 2007, modelling groups world-wide have performed a huge coordinated exercise of climate change runs for the 20th and 21st century. In this paper we present the results of the two french climate models, from CNRM and IPSL. In particular we emphasise the progress made since the previous IPCC report and we identify which results are comparable among models and which strongly differ.; Dans le cadre de la préparation du 4e rapport du Groupe Intergouvernemental sur l'Evolution du Climat (GIEC) qui doit paraître début 2007, les principales équipes de modélisation du climat de part le monde ont réalisé un important exercice coordonné de simulation de l'évolution du climat au cours du 20e et du 21e siècle. Nous présentons ici les résultats obtenus par les modèles du CNRM et de l'IPSL, en évoquant les progrès réalisés depuis le précédent rapport du GIEC. Nous replacerons également nos résultats par rapport à ceux des autres modèles, et indiquerons les résultats qui sont communs à l'ensemble des modèles et ceux qui peuvent être différents.
- Published
- 2006
449. Recent and futur climate change as simulated by the CNRM and IPSL models
- Author
-
Dufresne, Jean-Louis, Salas Y Mélia, David, Denvil, Sébastien, Tyteca, Sophie, Arzel, Olivier, Bony, Sandrine, Braconnot, Pascale, Brockmann, Patrick, Cadule, Patricia, Caubel, Arnaud, Chauvin, Fabrice, Déqué, Michel, Douville, Hervé, Fairhead, Laurent, Fichefet, Thierry, Foujols, Marie-Alice, Friedlingstein, Pierre, Guérémy, Jean-François, Hourdin, Frédéric, Idelkadi, Abderrahmane, Lévy, Claire, Madec, Gurvan, Marquet, Pascal, Marti, Olivier, Musat, Ionela, Planton, Serge, Royer, Jean-François, Swingedouw, Didier, Voldoire, Aurore, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astronomie et de Géophysique Georges Lemaître (UCL-ASTR), Université Catholique de Louvain = Catholic University of Louvain (UCL), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation du climat (CLIM), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] - Abstract
National audience; In support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) that should appear in early 2007, modelling groups world-wide have performed a huge coordinated exercise of climate change runs for the 20th and 21st century. In this paper we present the results of the two french climate models, from CNRM and IPSL. In particular we emphasise the progress made since the previous IPCC report and we identify which results are comparable among models and which strongly differ.; Dans le cadre de la préparation du 4e rapport du Groupe Intergouvernemental sur l'Evolution du Climat (GIEC) qui doit paraître début 2007, les principales équipes de modélisation du climat de part le monde ont réalisé un important exercice coordonné de simulation de l'évolution du climat au cours du 20e et du 21e siècle. Nous présentons ici les résultats obtenus par les modèles du CNRM et de l'IPSL, en évoquant les progrès réalisés depuis le précédent rapport du GIEC. Nous replacerons également nos résultats par rapport à ceux des autres modèles, et indiquerons les résultats qui sont communs à l'ensemble des modèles et ceux qui peuvent être différents.
- Published
- 2006
450. The new IPSL climate system model: IPSL-CM4
- Author
-
Marti, Olivier, Braconnot, Pascale, Bellier, Jacques, Benshila, Rachid, Bony, Sandrine, Brockmann, Patrick, Cadule, Patricia, Caubel, Arnaud, Denvil, Sébastien, Dufresne, Jean-Louis, Fairhead, Laurent, Filiberti, Marie-Angèle, Foujols, Marie-Alice, Fichefet, Thierry, Friedlingstein, Pierre, Gosse, H., Grandpeix, Jean-Yves, Hourdin, Frédéric, Krinner, Gerhard, Lévy, Claire, Madec, Gurvan, Musat, I., de Noblet, Nathalie, Polcher, Jan, Talandier, Claude, Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Modélisation du climat (CLIM), Calcul Scientifique (CALCULS), Institut Pierre-Simon-Laplace (IPSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), IPSL, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), and Aptel, Florence
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,[SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
The estimate of future climate change and of its impact on the environment requires to increase our knowledge of the complex interactions between the atmosphere, the ocean, sea-ice, land surfaces and glaciers. These components are coupled through the cycles of energy and water, but also through biogeochemical cycles such as the carbon or the ozone cycles. One of the goals of the IPSL modeling community is to study how these different couplings can modulate climate and climate variability, and to determine how feedbacks in the Earth system control the response of climate to a perturbation such as the anthropogenic emissions of greenhouse gases. For this purpose, the Earth system model of the IPSL is developed as a modular suite of model components of the Earth system that can be use either as stand alone models or coupled to each other. This note presents the new features and results of the last version of the global IPSL coupled model that will be used to run the set of simulations planned for the next IPCC assessment. In particular, chapter 2 presents the model components of the coupled system, highlighting important features for the coupling or the quality of model simulations. Chapter 3 synthesise all the coupling procedures and the coupling environment, and chapter 4 discussed the major characteristics of the model climatology.
- Published
- 2006
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.