351. Differential interaction of lectins with chemosensory receptors.
- Author
-
Kalinoski DL, Bruch RC, and Brand JG
- Subjects
- Alanine metabolism, Animals, Arginine metabolism, Binding, Competitive, Catfishes, Chemoreceptor Cells physiology, Peanut Agglutinin, Subcellular Fractions metabolism, Chemoreceptor Cells metabolism, Concanavalin A metabolism, Glycoproteins analysis, Lectins metabolism, Olfactory Mucosa metabolism, Taste Buds metabolism, Wheat Germ Agglutinins metabolism
- Abstract
L-Alanine and L-arginine bind with similar affinity (Kd 10(-7)-10(-6) M) to receptors in both a sedimentable fraction (P2) from taste epithelium and isolated olfactory cilia from the channel catfish, Ictalurus punctatus. Lectins of differing carbohydrate specificity were used to determine the glycoprotein nature of the chemosensory plasma membranes and to differentially affect receptors for L-alanine and L-arginine. The peroxidase-conjugated lectins concanavalin A (Con A), wheat germ agglutinin (WGA), and peanut agglutinin (PNA) were used to identify the glycoprotein components of the chemosensory plasma membranes after polyacrylamide gel electrophoresis. In both chemosensory membranes, numerous protein components were labelled by Con A and WGA. In contrast, a single predominant component was labeled by PNA in olfactory cilia, whereas several proteins in taste membranes were labeled by this lectin. When unconjugated lectins were preincubated with olfactory cilia, 60-70% of binding to L-alanine and L-arginine receptors was inhibited by Con A and WGA. PNA inhibited L-alanine but not L-arginine binding to olfactory receptors. Inhibition of olfactory receptor binding by lectins was time- and dose-dependent. By contrast, no inhibition of either L-alanine or L-arginine receptor binding in taste membranes was observed with any of the lectins. The differential labeling of the chemosensory membranes and the differential inhibition of receptor binding by lectins suggest that, despite ligand similarity, the chemosensory receptors in these membranes are not identical molecular species.
- Published
- 1987
- Full Text
- View/download PDF